|
|
@@ -7,8 +7,11 @@ import torch
|
|
|
import torchvision
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
+from safetensors import safe_open
|
|
|
from tqdm import tqdm
|
|
|
from einops import rearrange
|
|
|
+from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
|
|
|
+from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, convert_motion_lora_ckpt_to_diffusers
|
|
|
|
|
|
|
|
|
def zero_rank_print(s):
|
|
|
@@ -87,3 +90,68 @@ def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
|
|
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
|
|
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
|
|
return ddim_latents
|
|
|
+
|
|
|
+def load_weights(
|
|
|
+ animation_pipeline,
|
|
|
+ # motion module
|
|
|
+ motion_module_path = "",
|
|
|
+ motion_module_lora_configs = [],
|
|
|
+ # image layers
|
|
|
+ dreambooth_model_path = "",
|
|
|
+ lora_model_path = "",
|
|
|
+ lora_alpha = 0.8,
|
|
|
+):
|
|
|
+ # 1.1 motion module
|
|
|
+ unet_state_dict = {}
|
|
|
+ if motion_module_path != "":
|
|
|
+ print(f"load motion module from {motion_module_path}")
|
|
|
+ motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
|
|
|
+ motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
|
|
|
+ unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
|
|
|
+
|
|
|
+ missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
|
|
|
+ assert len(unexpected) == 0
|
|
|
+ del unet_state_dict
|
|
|
+
|
|
|
+ if dreambooth_model_path != "":
|
|
|
+ print(f"load dreambooth model from {dreambooth_model_path}")
|
|
|
+ if dreambooth_model_path.endswith(".safetensors"):
|
|
|
+ dreambooth_state_dict = {}
|
|
|
+ with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
|
|
|
+ for key in f.keys():
|
|
|
+ dreambooth_state_dict[key] = f.get_tensor(key)
|
|
|
+ elif dreambooth_model_path.endswith(".ckpt"):
|
|
|
+ dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
|
|
|
+
|
|
|
+ # 1. vae
|
|
|
+ converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
|
|
|
+ animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
|
|
|
+ # 2. unet
|
|
|
+ converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
|
|
|
+ animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
|
|
|
+ # 3. text_model
|
|
|
+ animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
|
|
|
+ del dreambooth_state_dict
|
|
|
+
|
|
|
+ if lora_model_path != "":
|
|
|
+ print(f"load lora model from {lora_model_path}")
|
|
|
+ assert lora_model_path.endswith(".safetensors")
|
|
|
+ lora_state_dict = {}
|
|
|
+ with safe_open(lora_model_path, framework="pt", device="cpu") as f:
|
|
|
+ for key in f.keys():
|
|
|
+ lora_state_dict[key] = f.get_tensor(key)
|
|
|
+
|
|
|
+ animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
|
|
|
+ del lora_state_dict
|
|
|
+
|
|
|
+
|
|
|
+ for motion_module_lora_config in motion_module_lora_configs:
|
|
|
+ path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
|
|
|
+ print(f"load motion LoRA from {path}")
|
|
|
+
|
|
|
+ motion_lora_state_dict = torch.load(path, map_location="cpu")
|
|
|
+ motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
|
|
|
+
|
|
|
+ animation_pipeline = convert_motion_lora_ckpt_to_diffusers(animation_pipeline, motion_lora_state_dict, alpha)
|
|
|
+
|
|
|
+ return animation_pipeline
|