import argparse import datetime import inspect import os from omegaconf import OmegaConf import torch import diffusers from diffusers import AutoencoderKL, DDIMScheduler from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from animatediff.models.unet import UNet3DConditionModel from animatediff.pipelines.pipeline_animation import AnimationPipeline from animatediff.utils.util import save_videos_grid from animatediff.utils.util import load_weights from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat import csv, pdb, glob import math from pathlib import Path def main(args): *_, func_args = inspect.getargvalues(inspect.currentframe()) func_args = dict(func_args) time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") savedir = f"samples/{Path(args.config).stem}-{time_str}" os.makedirs(savedir) config = OmegaConf.load(args.config) samples = [] sample_idx = 0 for model_idx, (config_key, model_config) in enumerate(list(config.items())): motion_modules = model_config.motion_module motion_modules = [motion_modules] if isinstance(motion_modules, str) else list(motion_modules) for motion_module in motion_modules: inference_config = OmegaConf.load(model_config.get("inference_config", args.inference_config)) ### >>> create validation pipeline >>> ### tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae") unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)) if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: assert False pipeline = AnimationPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)), ).to("cuda") pipeline = load_weights( pipeline, # motion module motion_module_path = motion_module, motion_module_lora_configs = model_config.get("motion_module_lora_configs", []), # image layers dreambooth_model_path = model_config.get("dreambooth_path", ""), lora_model_path = model_config.get("lora_model_path", ""), lora_alpha = model_config.get("lora_alpha", 0.8), ).to("cuda") prompts = model_config.prompt n_prompts = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt random_seeds = model_config.get("seed", [-1]) random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds) random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds config[config_key].random_seed = [] for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)): # manually set random seed for reproduction if random_seed != -1: torch.manual_seed(random_seed) else: torch.seed() config[config_key].random_seed.append(torch.initial_seed()) print(f"current seed: {torch.initial_seed()}") print(f"sampling {prompt} ...") sample = pipeline( prompt, negative_prompt = n_prompt, num_inference_steps = model_config.steps, guidance_scale = model_config.guidance_scale, width = args.W, height = args.H, video_length = args.L, ).videos samples.append(sample) prompt = "-".join((prompt.replace("/", "").split(" ")[:10])) save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif") print(f"save to {savedir}/sample/{prompt}.gif") sample_idx += 1 samples = torch.concat(samples) save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4) OmegaConf.save(config, f"{savedir}/config.yaml") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pretrained_model_path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",) parser.add_argument("--inference_config", type=str, default="configs/inference/inference-v2.yaml") parser.add_argument("--config", type=str, required=True) parser.add_argument("--L", type=int, default=16 ) parser.add_argument("--W", type=int, default=512) parser.add_argument("--H", type=int, default=512) args = parser.parse_args() main(args)