123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- from dataclasses import dataclass
- from typing import List, Optional, Tuple, Union
- import torch
- import numpy as np
- import torch.nn.functional as F
- from torch import nn
- import torchvision
- from diffusers.configuration_utils import ConfigMixin, register_to_config
- from diffusers.modeling_utils import ModelMixin
- from diffusers.utils import BaseOutput
- from diffusers.utils.import_utils import is_xformers_available
- from diffusers.models.attention import CrossAttention, FeedForward
- from einops import rearrange, repeat
- import math
- def zero_module(module):
- # Zero out the parameters of a module and return it.
- for p in module.parameters():
- p.detach().zero_()
- return module
- @dataclass
- class TemporalTransformer3DModelOutput(BaseOutput):
- sample: torch.FloatTensor
- if is_xformers_available():
- import xformers
- import xformers.ops
- else:
- xformers = None
- def get_motion_module(
- in_channels,
- motion_module_type: str,
- motion_module_kwargs: dict
- ):
- if motion_module_type == "Vanilla":
- return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,)
- else:
- raise ValueError
- class VanillaTemporalModule(nn.Module):
- def __init__(
- self,
- in_channels,
- num_attention_heads = 8,
- num_transformer_block = 2,
- attention_block_types =( "Temporal_Self", "Temporal_Self" ),
- cross_frame_attention_mode = None,
- temporal_position_encoding = False,
- temporal_position_encoding_max_len = 24,
- temporal_attention_dim_div = 1,
- zero_initialize = True,
- ):
- super().__init__()
-
- self.temporal_transformer = TemporalTransformer3DModel(
- in_channels=in_channels,
- num_attention_heads=num_attention_heads,
- attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
- num_layers=num_transformer_block,
- attention_block_types=attention_block_types,
- cross_frame_attention_mode=cross_frame_attention_mode,
- temporal_position_encoding=temporal_position_encoding,
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
- )
-
- if zero_initialize:
- self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
- def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
- hidden_states = input_tensor
- hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
- output = hidden_states
- return output
- class TemporalTransformer3DModel(nn.Module):
- def __init__(
- self,
- in_channels,
- num_attention_heads,
- attention_head_dim,
- num_layers,
- attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
- dropout = 0.0,
- norm_num_groups = 32,
- cross_attention_dim = 768,
- activation_fn = "geglu",
- attention_bias = False,
- upcast_attention = False,
-
- cross_frame_attention_mode = None,
- temporal_position_encoding = False,
- temporal_position_encoding_max_len = 24,
- ):
- super().__init__()
- inner_dim = num_attention_heads * attention_head_dim
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
- self.proj_in = nn.Linear(in_channels, inner_dim)
- self.transformer_blocks = nn.ModuleList(
- [
- TemporalTransformerBlock(
- dim=inner_dim,
- num_attention_heads=num_attention_heads,
- attention_head_dim=attention_head_dim,
- attention_block_types=attention_block_types,
- dropout=dropout,
- norm_num_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- activation_fn=activation_fn,
- attention_bias=attention_bias,
- upcast_attention=upcast_attention,
- cross_frame_attention_mode=cross_frame_attention_mode,
- temporal_position_encoding=temporal_position_encoding,
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
- )
- for d in range(num_layers)
- ]
- )
- self.proj_out = nn.Linear(inner_dim, in_channels)
-
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
- video_length = hidden_states.shape[2]
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
- batch, channel, height, weight = hidden_states.shape
- residual = hidden_states
- hidden_states = self.norm(hidden_states)
- inner_dim = hidden_states.shape[1]
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
- hidden_states = self.proj_in(hidden_states)
- # Transformer Blocks
- for block in self.transformer_blocks:
- hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
-
- # output
- hidden_states = self.proj_out(hidden_states)
- hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
- output = hidden_states + residual
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
-
- return output
- class TemporalTransformerBlock(nn.Module):
- def __init__(
- self,
- dim,
- num_attention_heads,
- attention_head_dim,
- attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
- dropout = 0.0,
- norm_num_groups = 32,
- cross_attention_dim = 768,
- activation_fn = "geglu",
- attention_bias = False,
- upcast_attention = False,
- cross_frame_attention_mode = None,
- temporal_position_encoding = False,
- temporal_position_encoding_max_len = 24,
- ):
- super().__init__()
- attention_blocks = []
- norms = []
-
- for block_name in attention_block_types:
- attention_blocks.append(
- VersatileAttention(
- attention_mode=block_name.split("_")[0],
- cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
-
- query_dim=dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- upcast_attention=upcast_attention,
-
- cross_frame_attention_mode=cross_frame_attention_mode,
- temporal_position_encoding=temporal_position_encoding,
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
- )
- )
- norms.append(nn.LayerNorm(dim))
-
- self.attention_blocks = nn.ModuleList(attention_blocks)
- self.norms = nn.ModuleList(norms)
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
- self.ff_norm = nn.LayerNorm(dim)
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
- for attention_block, norm in zip(self.attention_blocks, self.norms):
- norm_hidden_states = norm(hidden_states)
- hidden_states = attention_block(
- norm_hidden_states,
- encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
- video_length=video_length,
- ) + hidden_states
-
- hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
-
- output = hidden_states
- return output
- class PositionalEncoding(nn.Module):
- def __init__(
- self,
- d_model,
- dropout = 0.,
- max_len = 24
- ):
- super().__init__()
- self.dropout = nn.Dropout(p=dropout)
- position = torch.arange(max_len).unsqueeze(1)
- div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
- pe = torch.zeros(1, max_len, d_model)
- pe[0, :, 0::2] = torch.sin(position * div_term)
- pe[0, :, 1::2] = torch.cos(position * div_term)
- self.register_buffer('pe', pe)
- def forward(self, x):
- x = x + self.pe[:, :x.size(1)]
- return self.dropout(x)
- class VersatileAttention(CrossAttention):
- def __init__(
- self,
- attention_mode = None,
- cross_frame_attention_mode = None,
- temporal_position_encoding = False,
- temporal_position_encoding_max_len = 24,
- *args, **kwargs
- ):
- super().__init__(*args, **kwargs)
- assert attention_mode == "Temporal"
- self.attention_mode = attention_mode
- self.is_cross_attention = kwargs["cross_attention_dim"] is not None
-
- self.pos_encoder = PositionalEncoding(
- kwargs["query_dim"],
- dropout=0.,
- max_len=temporal_position_encoding_max_len
- ) if (temporal_position_encoding and attention_mode == "Temporal") else None
- def extra_repr(self):
- return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
- batch_size, sequence_length, _ = hidden_states.shape
- if self.attention_mode == "Temporal":
- d = hidden_states.shape[1]
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
-
- if self.pos_encoder is not None:
- hidden_states = self.pos_encoder(hidden_states)
-
- encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
- else:
- raise NotImplementedError
- encoder_hidden_states = encoder_hidden_states
- if self.group_norm is not None:
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
- query = self.to_q(hidden_states)
- dim = query.shape[-1]
- query = self.reshape_heads_to_batch_dim(query)
- if self.added_kv_proj_dim is not None:
- raise NotImplementedError
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
- key = self.to_k(encoder_hidden_states)
- value = self.to_v(encoder_hidden_states)
- key = self.reshape_heads_to_batch_dim(key)
- value = self.reshape_heads_to_batch_dim(value)
- if attention_mask is not None:
- if attention_mask.shape[-1] != query.shape[1]:
- target_length = query.shape[1]
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
- # attention, what we cannot get enough of
- if self._use_memory_efficient_attention_xformers:
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
- hidden_states = hidden_states.to(query.dtype)
- else:
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
- hidden_states = self._attention(query, key, value, attention_mask)
- else:
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
- # linear proj
- hidden_states = self.to_out[0](hidden_states)
- # dropout
- hidden_states = self.to_out[1](hidden_states)
- if self.attention_mode == "Temporal":
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
- return hidden_states
|