123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- # coding=utf-8
- # Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ Conversion script for the LoRA's safetensors checkpoints. """
- import argparse
- import torch
- from safetensors.torch import load_file
- from diffusers import StableDiffusionPipeline
- import pdb
- def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0):
- # directly update weight in diffusers model
- for key in state_dict:
- # only process lora down key
- if "up." in key: continue
- up_key = key.replace(".down.", ".up.")
- model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
- model_key = model_key.replace("to_out.", "to_out.0.")
- layer_infos = model_key.split(".")[:-1]
- curr_layer = pipeline.unet
- while len(layer_infos) > 0:
- temp_name = layer_infos.pop(0)
- curr_layer = curr_layer.__getattr__(temp_name)
- weight_down = state_dict[key]
- weight_up = state_dict[up_key]
- curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
- return pipeline
- def convert_motion_lora_ckpt_to_diffusers_test(pipeline, state_dict, alpha=1.0):
- # directly update weight in diffusers model
- for key in state_dict:
- if "weight" in key:
- # only process lora down key
- if "up." in key: continue
-
- up_key = key.replace("_down.", "_up.")
- model_key = key.replace('-', '.').replace("_lora", "").replace("lora_down.", "").replace("lora_up.", "")
- print(up_key)
- print(key)
- print(model_key)
- layer_infos = model_key.split(".")[:-1]
- curr_layer = pipeline.unet
- while len(layer_infos) > 0:
- temp_name = layer_infos.pop(0)
- curr_layer = curr_layer.__getattr__(temp_name)
- weight_down = state_dict[key]
- weight_up = state_dict[up_key]
- curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
- print(weight_down)
- print(weight_up)
- print("------")
- print(curr_layer)
- return pipeline
- def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
- # load base model
- # pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
- # load LoRA weight from .safetensors
- # state_dict = load_file(checkpoint_path)
- visited = []
- # directly update weight in diffusers model
- for key in state_dict:
- # it is suggested to print out the key, it usually will be something like below
- # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
- # as we have set the alpha beforehand, so just skip
- if ".alpha" in key or key in visited:
- continue
- if "text" in key:
- layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
- curr_layer = pipeline.text_encoder
- else:
- layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
- curr_layer = pipeline.unet
- # find the target layer
- temp_name = layer_infos.pop(0)
- while len(layer_infos) > -1:
- try:
- curr_layer = curr_layer.__getattr__(temp_name)
- if len(layer_infos) > 0:
- temp_name = layer_infos.pop(0)
- elif len(layer_infos) == 0:
- break
- except Exception:
- if len(temp_name) > 0:
- temp_name += "_" + layer_infos.pop(0)
- else:
- temp_name = layer_infos.pop(0)
- pair_keys = []
- if "lora_down" in key:
- pair_keys.append(key.replace("lora_down", "lora_up"))
- pair_keys.append(key)
- else:
- pair_keys.append(key)
- pair_keys.append(key.replace("lora_up", "lora_down"))
- # update weight
- if len(state_dict[pair_keys[0]].shape) == 4:
- weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
- weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
- curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device)
- else:
- weight_up = state_dict[pair_keys[0]].to(torch.float32)
- weight_down = state_dict[pair_keys[1]].to(torch.float32)
- curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
- # update visited list
- for item in pair_keys:
- visited.append(item)
- return pipeline
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
- )
- parser.add_argument(
- "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
- )
- parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
- parser.add_argument(
- "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
- )
- parser.add_argument(
- "--lora_prefix_text_encoder",
- default="lora_te",
- type=str,
- help="The prefix of text encoder weight in safetensors",
- )
- parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
- parser.add_argument(
- "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
- )
- parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
- args = parser.parse_args()
- base_model_path = args.base_model_path
- checkpoint_path = args.checkpoint_path
- dump_path = args.dump_path
- lora_prefix_unet = args.lora_prefix_unet
- lora_prefix_text_encoder = args.lora_prefix_text_encoder
- alpha = args.alpha
- pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
- pipe = pipe.to(args.device)
- pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|