import torch import torch.nn as nn import math from easyfl.models import BaseModel cfg = { 'VGG9': [32, 64, 'M', 128, 128, 'M', 256, 256, 'M'], } def make_layers(cfg, batch_norm): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) class Model(BaseModel): def __init__(self, features=make_layers(cfg['VGG9'], batch_norm=False), num_classes=10): super(Model, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Dropout(p=0.1), nn.Linear(4096, 512), nn.ReLU(True), nn.Dropout(p=0.1), nn.Linear(512, 512), nn.ReLU(True), nn.Linear(512, num_classes), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.reset_parameters() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() def VGG9(batch_norm=False, **kwargs): model = Model(make_layers(cfg['VGG9'], batch_norm), **kwargs) return model