import torch.nn as nn from torch.nn import init from torchvision import models from easyfl.models import BaseModel def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') # For old pytorch, you may use kaiming_normal. elif classname.find('Linear') != -1: init.kaiming_normal_(m.weight.data, a=0, mode='fan_out') init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm1d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: init.normal_(m.weight.data, std=0.001) init.constant_(m.bias.data, 0.0) class ClassBlock(nn.Module): def __init__(self, input_dim, class_num, droprate, relu=False, bnorm=True, num_bottleneck=512, linear=True, return_f=False): super(ClassBlock, self).__init__() self.return_f = return_f add_block = [] if linear: add_block += [nn.Linear(input_dim, num_bottleneck)] else: num_bottleneck = input_dim if bnorm: add_block += [nn.BatchNorm1d(num_bottleneck)] if relu: add_block += [nn.LeakyReLU(0.1)] if droprate > 0: add_block += [nn.Dropout(p=droprate)] add_block = nn.Sequential(*add_block) add_block.apply(weights_init_kaiming) classifier = [] classifier += [nn.Linear(num_bottleneck, class_num)] classifier = nn.Sequential(*classifier) classifier.apply(weights_init_classifier) self.add_block = add_block self.classifier = classifier def forward(self, x): x = self.add_block(x) if self.return_f: f = x x = self.classifier(x) return x, f else: x = self.classifier(x) return x # Define the ResNet50-based Model class Model(BaseModel): def __init__(self, class_num=0, droprate=0.5, stride=2): super(Model, self).__init__() model_ft = models.resnet50(pretrained=True) self.class_num = class_num if stride == 1: model_ft.layer4[0].downsample[0].stride = (1, 1) model_ft.layer4[0].conv2.stride = (1, 1) model_ft.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.model = model_ft if self.class_num != 0: self.classifier = ClassBlock(2048, class_num, droprate) else: self.classifier = ClassBlock(2048, 10, droprate) # 10 is not effective because classifier is replaced below self.classifier.classifier = nn.Sequential() def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.model.avgpool(x) x = x.view(x.size(0), x.size(1)) x = self.classifier(x) return x def get_classifier(class_num, num_bottleneck=512): classifier = [] classifier += [nn.Linear(num_bottleneck, class_num)] classifier = nn.Sequential(*classifier) classifier.apply(weights_init_classifier) return classifier