import torch import torch.nn.functional as F from tqdm import tqdm # code is obtained from https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb#scrollTo=lzFyFnhbk8hj # test using a knn monitor def knn_monitor(net, memory_data_loader, test_data_loader, k=200, t=0.1, hide_progress=False, device=None): net.eval() classes = len(memory_data_loader.dataset.classes) total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, [] with torch.no_grad(): # generate feature bank for data, target in tqdm(memory_data_loader, desc='Feature extracting', leave=False, disable=hide_progress): if device is None: data = data.cuda(non_blocking=True) else: data = data.to(device, non_blocking=True) feature = net(data) feature = F.normalize(feature, dim=1) feature_bank.append(feature) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device) # loop test data to predict the label by weighted knn search test_bar = tqdm(test_data_loader, desc='kNN', disable=hide_progress) for data, target in test_bar: if device is None: data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) else: data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True) feature = net(data) feature = F.normalize(feature, dim=1) pred_labels = knn_predict(feature, feature_bank, feature_labels, classes, k, t) total_num += data.size(0) total_top1 += (pred_labels[:, 0] == target).float().sum().item() test_bar.set_postfix({'Accuracy': total_top1 / total_num * 100}) print("Accuracy: {}".format(total_top1 / total_num * 100)) return total_top1 / total_num * 100 # knn monitor as in InstDisc https://arxiv.org/abs/1805.01978 # implementation follows http://github.com/zhirongw/lemniscate.pytorch and https://github.com/leftthomas/SimCLR def knn_predict(feature, feature_bank, feature_labels, classes, knn_k, knn_t): # compute cos similarity between each feature vector and feature bank ---> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=knn_k, dim=-1) # [B, K] sim_labels = torch.gather(feature_labels.expand(feature.size(0), -1), dim=-1, index=sim_indices) sim_weight = (sim_weight / knn_t).exp() # counts for each class one_hot_label = torch.zeros(feature.size(0) * knn_k, classes, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0) # weighted score ---> [B, C] pred_scores = torch.sum(one_hot_label.view(feature.size(0), -1, classes) * sim_weight.unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) return pred_labels