# Tutorial 4: Models EasyFL supports numerous models and allows you to customize the model. ## Out-of-the-box Models To use these models, you can set configurations `model: `. We currently provide `lenet`, `resnet`, `resnet18`, `resnet50`,`vgg9`, and `rnn`. ## Customized Models EasyFL allows training with a wide range of models by providing the flexibility to customize models. You can customize and register models in two ways: register as a class and register as an instance. Either way, the basic is to **inherit and implement the `easyfl.models.BaseModel`**. ### Register as a Class In the example below, we implement and conduct FL training with a `CustomizedModel`. It is applicable when the model does not require extra arguments to initialize. ```python from torch import nn import torch.nn.functional as F import easyfl from easyfl.models import BaseModel # Define a customized model class. class CustomizedModel(BaseModel): def __init__(self): super(CustomizedModel, self).__init__() self.conv1 = nn.Conv2d(3, 32, 224, padding=(2, 2)) self.conv2 = nn.Conv2d(32, 64, 5, padding=(2, 2)) self.fc1 = nn.Linear(64, 128) self.fc2 = nn.Linear(128, 42) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 64) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # Register the customized model class. easyfl.register_model(CustomizedModel) # Initialize EasyFL. easyfl.init() # Execute FL training. easyfl.run() ``` ### Register as an Instance When the model requires arguments for initialization, we can implement and register a model instance. ```python from torch import nn import torch.nn.functional as F import easyfl from easyfl.models import BaseModel # Define a customized model class. class CustomizedModel(BaseModel): def __init__(self, num_class): super(CustomizedModel, self).__init__() self.conv1 = nn.Conv2d(3, 32, 224, padding=(2, 2)) self.conv2 = nn.Conv2d(32, 64, 5, padding=(2, 2)) self.fc1 = nn.Linear(64, 128) self.fc2 = nn.Linear(128, num_class) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 64) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # Register the customized model instance. easyfl.register_model(CustomizedModel(num_class=10)) # Initialize EasyFL. easyfl.init() # Execute FL training. easyfl.run() ```