123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torchvision.models.resnet
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, in_planes, planes, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(
- in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
- stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion * planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, in_planes, planes, stride=1):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
- stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, self.expansion *
- planes, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(self.expansion * planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion * planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = F.relu(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
- class ResNet(nn.Module):
- """ResNet
- Note two main differences from official pytorch version:
- 1. conv1 kernel size: pytorch version uses kernel_size=7
- 2. average pooling: pytorch version uses AdaptiveAvgPool
- """
- def __init__(self, block, num_blocks, num_classes=10):
- super(ResNet, self).__init__()
- self.in_planes = 64
- self.feature_dim = 512 * block.expansion
- self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
- self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
- self.avgpool = nn.AvgPool2d((4, 4))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes * block.expansion
- return nn.Sequential(*layers)
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- out = self.avgpool(out)
- out = out.view(out.size(0), -1)
- out = self.fc(out)
- return out
- def ResNet18(num_classes=10):
- return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
- def ResNet34(num_classes=10):
- return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)
- def ResNet50(num_classes=10):
- return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)
- def ResNet101(num_classes=10):
- return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
- def ResNet152(num_classes=10):
- return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)
|