123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- import argparse
- import easyfl
- from client import FedSSLClient
- from dataset import get_semi_supervised_dataset
- from easyfl.datasets.data import CIFAR100
- from easyfl.distributed import slurm
- from model import get_model, BYOLNoEMA, BYOL, BYOLNoSG, BYOLNoEMA_NoSG
- from server import FedSSLServer
- def run():
- parser = argparse.ArgumentParser(description='FedSSL')
- parser.add_argument("--task_id", type=str, default="")
- parser.add_argument("--dataset", type=str, default='cifar10', help='options: cifar10, cifar100')
- parser.add_argument("--data_partition", type=str, default='class', help='options: class, iid, dir')
- parser.add_argument("--dir_alpha", type=float, default=0.1, help='alpha for dirichlet sampling')
- parser.add_argument('--model', default='byol', type=str, help='options: byol, simsiam, simclr, moco, moco_v2')
- parser.add_argument('--encoder_network', default='resnet18', type=str,
- help='network architecture of encoder, options: resnet18, resnet50')
- parser.add_argument('--predictor_network', default='2_layer', type=str,
- help='network of predictor, options: 1_layer, 2_layer')
- parser.add_argument('--batch_size', default=128, type=int)
- parser.add_argument('--local_epoch', default=5, type=int)
- parser.add_argument('--rounds', default=100, type=int)
- parser.add_argument('--num_of_clients', default=5, type=int)
- parser.add_argument('--clients_per_round', default=5, type=int)
- parser.add_argument('--class_per_client', default=2, type=int,
- help='for non-IID setting, number of classes each client, based on CIFAR10')
- parser.add_argument('--optimizer_type', default='SGD', type=str, help='optimizer type')
- parser.add_argument('--lr', default=0.032, type=float)
- parser.add_argument('--lr_type', default='cosine', type=str, help='cosine decay learning rate')
- parser.add_argument('--random_selection', action='store_true', help='whether randomly select clients')
- parser.add_argument('--aggregate_encoder', default='online', type=str, help='options: online, target')
- parser.add_argument('--update_encoder', default='online', type=str, help='options: online, target, both, none')
- parser.add_argument('--update_predictor', default='global', type=str, help='options: global, local, dapu')
- parser.add_argument('--dapu_threshold', default=0.4, type=float, help='DAPU threshold value')
- parser.add_argument('--weight_scaler', default=1.0, type=float, help='weight scaler for different class per client')
- parser.add_argument('--auto_scaler', default='y', type=str, help='use value to compute auto scaler')
- parser.add_argument('--auto_scaler_target', default=0.8, type=float,
- help='target weight for the first time scaling')
- parser.add_argument('--encoder_weight', type=float, default=0,
- help='for ema encoder update, apply on local encoder')
- parser.add_argument('--predictor_weight', type=float, default=0,
- help='for ema predictor update, apply on local predictor')
- parser.add_argument('--test_every', default=10, type=int, help='test every x rounds')
- parser.add_argument('--save_model_every', default=10, type=int, help='save model every x rounds')
- parser.add_argument('--save_predictor', action='store_true', help='whether save predictor')
- parser.add_argument('--semi_supervised', action='store_true', help='whether to train with semi-supervised data')
- parser.add_argument('--label_ratio', default=0.01, type=float, help='percentage of labeled data')
- parser.add_argument('--gpu', default=0, type=int)
- parser.add_argument('--run_count', default=0, type=int)
- args = parser.parse_args()
- print("arguments: ", args)
- class_per_client = args.class_per_client
- if args.dataset == CIFAR100:
- class_per_client *= 10
- task_id = args.task_id
- if task_id == "":
- task_id = f"{args.dataset}_{args.model}_{args.encoder_network}_{args.data_partition}_" \
- f"aggregate_{args.aggregate_encoder}_update_{args.update_encoder}_predictor_{args.update_predictor}_" \
- f"run{args.run_count}"
- momentum_update = True
- if args.model == BYOLNoEMA:
- args.model = BYOL
- momentum_update = False
- elif args.model == BYOLNoEMA_NoSG:
- args.model = BYOLNoSG
- momentum_update = False
- image_size = 32
- config = {
- "task_id": task_id,
- "data": {
- "dataset": args.dataset,
- "num_of_clients": args.num_of_clients,
- "split_type": args.data_partition,
- "class_per_client": class_per_client,
- "data_amount": 1,
- "iid_fraction": 1,
- "min_size": 10,
- "alpha": args.dir_alpha,
- },
- "model": args.model,
- "test_mode": "test_in_server",
- "server": {
- "batch_size": args.batch_size,
- "rounds": args.rounds,
- "test_every": args.test_every,
- "save_model_every": args.save_model_every,
- "clients_per_round": args.clients_per_round,
- "random_selection": args.random_selection,
- "save_predictor": args.save_predictor,
- "test_all": True,
- },
- "client": {
- "drop_last": True,
- "batch_size": args.batch_size,
- "local_epoch": args.local_epoch,
- "optimizer": {
- "type": args.optimizer_type,
- "lr_type": args.lr_type,
- "lr": args.lr,
- "momentum": 0.9,
- "weight_decay": 0.0005,
- },
- # application specific
- "model": args.model,
- "rounds": args.rounds,
- "gaussian": False,
- "image_size": image_size,
- "aggregate_encoder": args.aggregate_encoder,
- "update_encoder": args.update_encoder,
- "update_predictor": args.update_predictor,
- "dapu_threshold": args.dapu_threshold,
- "weight_scaler": args.weight_scaler,
- "auto_scaler": args.auto_scaler,
- "auto_scaler_target": args.auto_scaler_target,
- "random_selection": args.random_selection,
- "encoder_weight": args.encoder_weight,
- "predictor_weight": args.predictor_weight,
- "momentum_update": momentum_update,
- },
- 'resource_heterogeneous': {"grouping_strategy": ""}
- }
- if args.gpu > 1:
- rank, local_rank, world_size, host_addr = slurm.setup()
- distribute_config = {
- "gpu": world_size,
- "distributed": {
- "rank": rank,
- "local_rank": local_rank,
- "world_size": world_size,
- "init_method": host_addr
- },
- }
- config.update(distribute_config)
- else:
- config["gpu"] = args.gpu
- if args.semi_supervised:
- train_data, test_data, _ = get_semi_supervised_dataset(args.dataset,
- args.num_of_clients,
- args.data_partition,
- class_per_client,
- args.label_ratio)
- easyfl.register_dataset(train_data, test_data)
- model = get_model(args.model, args.encoder_network, args.predictor_network)
- easyfl.register_model(model)
- easyfl.register_client(FedSSLClient)
- easyfl.register_server(FedSSLServer)
- easyfl.init(config, init_all=True)
- easyfl.run()
- if __name__ == '__main__':
- run()
|