12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- from __future__ import absolute_import
- from torch import nn
- from torch.autograd import Variable
- from torch.nn import functional as F
- from torch.nn import init
- import torch
- import torchvision
- import math
- from .resnet import *
- __all__ = ["End2End_AvgPooling"]
- class AvgPooling(nn.Module):
- def __init__(self, input_feature_size, embedding_fea_size=1024, dropout=0.5):
- super(self.__class__, self).__init__()
-
- self.embedding_fea_size = embedding_fea_size
- self.embedding = nn.Linear(input_feature_size, embedding_fea_size)
- self.embedding_bn = nn.BatchNorm1d(embedding_fea_size)
- init.kaiming_normal_(self.embedding.weight, mode='fan_out')
- init.constant_(self.embedding.bias, 0)
- init.constant_(self.embedding_bn.weight, 1)
- init.constant_(self.embedding_bn.bias, 0)
- self.drop = nn.Dropout(dropout)
- def forward(self, inputs):
- net = inputs.mean(dim=1)
- eval_features = F.normalize(net, p=2, dim=1)
- net = self.embedding(net)
- net = self.embedding_bn(net)
- net = F.normalize(net, p=2, dim=1)
- net = self.drop(net)
- return net, eval_features
- class End2End_AvgPooling(nn.Module):
- def __init__(self, dropout=0, embedding_fea_size=1024, fixed_layer=True):
- super(self.__class__, self).__init__()
- self.CNN = resnet50(dropout=dropout, fixed_layer=fixed_layer)
- self.avg_pooling = AvgPooling(input_feature_size=2048, embedding_fea_size=embedding_fea_size, dropout=dropout)
- def forward(self, x):
- assert len(x.data.shape) == 5
-
- oriShape = x.data.shape
- x = x.view(-1, oriShape[2], oriShape[3], oriShape[4])
-
- resnet_feature = self.CNN(x)
-
- resnet_feature = resnet_feature.view(oriShape[0], oriShape[1], -1)
-
- output = self.avg_pooling(resnet_feature)
- return output
|