import numpy as np import torch import torchvision from torchvision import transforms class Cutout(object): """Cutout data augmentation is adopted from https://github.com/uoguelph-mlrg/Cutout""" def __init__(self, length=16): self.length = length def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ h = img.size(1) w = img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img transform_train = transforms.Compose([ torchvision.transforms.ToPILImage(mode='RGB'), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768)), ]) transform_train.transforms.append(Cutout()) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768)), ])