import logging import os from easyfl.datasets.femnist.preprocess.data_to_json import data_to_json from easyfl.datasets.femnist.preprocess.get_file_dirs import get_file_dir from easyfl.datasets.femnist.preprocess.get_hashes import get_hash from easyfl.datasets.femnist.preprocess.group_by_writer import group_by_writer from easyfl.datasets.femnist.preprocess.match_hashes import match_hash from easyfl.datasets.utils.base_dataset import BaseDataset from easyfl.datasets.utils.download import download_url, extract_archive, download_from_google_drive logger = logging.getLogger(__name__) class Femnist(BaseDataset): """FEMNIST dataset implementation. It gets FEMNIST dataset according to configurations. It stores the processed datasets locally. Attributes: base_folder (str): The base folder path of the datasets folder. class_url (str): The url to get the by_class split FEMNIST. write_url (str): The url to get the by_write split FEMNIST. """ def __init__(self, root, fraction, split_type, user, iid_user_fraction=0.1, train_test_split=0.9, minsample=10, num_class=62, num_of_client=100, class_per_client=2, setting_folder=None, seed=-1, **kwargs): super(Femnist, self).__init__(root, "femnist", fraction, split_type, user, iid_user_fraction, train_test_split, minsample, num_class, num_of_client, class_per_client, setting_folder, seed) self.class_url = "https://s3.amazonaws.com/nist-srd/SD19/by_class.zip" self.write_url = "https://s3.amazonaws.com/nist-srd/SD19/by_write.zip" self.packaged_data_files = { "femnist_niid_100_10_1_0.05_0.1_sample_0.9.zip": "https://dl.dropboxusercontent.com/s/oyhegd3c0pxa0tl/femnist_niid_100_10_1_0.05_0.1_sample_0.9.zip", "femnist_iid_100_10_1_0.05_0.1_sample_0.9.zip": "https://dl.dropboxusercontent.com/s/jcg0xrz5qrri4tv/femnist_iid_100_10_1_0.05_0.1_sample_0.9.zip" } # Google Drive ids # self.packaged_data_files = { # "femnist_niid_100_10_1_0.05_0.1_sample_0.9.zip": "11vAxASl-af41iHpFqW2jixs1jOUZDXMS", # "femnist_iid_100_10_1_0.05_0.1_sample_0.9.zip": "1U9Sn2ACbidwhhihdJdZPfK2YddPMr33k" # } def download_packaged_dataset_and_extract(self, filename): file_path = download_url(self.packaged_data_files[filename], self.base_folder) extract_archive(file_path, remove_finished=True) def download_raw_file_and_extract(self): raw_data_folder = os.path.join(self.base_folder, "raw_data") if not os.path.exists(raw_data_folder): os.makedirs(raw_data_folder) elif os.listdir(raw_data_folder): logger.info("raw file exists") return class_path = download_url(self.class_url, raw_data_folder) write_path = download_url(self.write_url, raw_data_folder) extract_archive(class_path, remove_finished=True) extract_archive(write_path, remove_finished=True) logger.info("raw file is downloaded") def preprocess(self): intermediate_folder = os.path.join(self.base_folder, "intermediate") if not os.path.exists(intermediate_folder): os.makedirs(intermediate_folder) if not os.path.exists(intermediate_folder + "/class_file_dirs.pkl"): logger.info("extracting file directories of images") get_file_dir(self.base_folder) logger.info("finished extracting file directories of images") if not os.path.exists(intermediate_folder + "/class_file_hashes.pkl"): logger.info("calculating image hashes") get_hash(self.base_folder) logger.info("finished calculating image hashes") if not os.path.exists(intermediate_folder + "/write_with_class.pkl"): logger.info("assigning class labels to write images") match_hash(self.base_folder) logger.info("finished assigning class labels to write images") if not os.path.exists(intermediate_folder + "/images_by_writer.pkl"): logger.info("grouping images by writer") group_by_writer(self.base_folder) logger.info("finished grouping images by writer") def convert_data_to_json(self): all_data_folder = os.path.join(self.base_folder, "all_data") if not os.path.exists(all_data_folder): os.makedirs(all_data_folder) if not os.listdir(all_data_folder): logger.info("converting data to .json format") data_to_json(self.base_folder) logger.info("finished converting data to .json format")