123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- import argparse
- from collections import defaultdict
- import numpy as np
- import torch
- import torch.nn as nn
- from easyfl.datasets.data import CIFAR100
- from eval_dataset import get_semi_supervised_data_loaders
- from model import get_encoder_network
- def test_whole(resnet, logreg, device, test_loader, model_path):
- print("### Calculating final testing performance ###")
- resnet.eval()
- logreg.eval()
- metrics = defaultdict(list)
- for step, (h, y) in enumerate(test_loader):
- h = h.to(device)
- y = y.to(device)
- with torch.no_grad():
- outputs = logreg(resnet(h))
-
- accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
- metrics["Accuracy/test"].append(accuracy)
- print(f"Final test performance: " + "\t".join([f"{k}: {np.array(v).mean()}" for k, v in metrics.items()]))
- return np.array(metrics["Accuracy/test"]).mean()
- def finetune_internal(model, epochs, label_loader, test_loader, num_class, device, lr=3e-3):
- model = model.to(device)
- num_features = model.feature_dim
- n_classes = num_class
-
- logreg = nn.Sequential(nn.Linear(num_features, n_classes))
- logreg = logreg.to(device)
-
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(params=logreg.parameters(), lr=lr)
-
- model.train()
- logreg.train()
- for epoch in range(epochs):
- metrics = defaultdict(list)
- for step, (h, y) in enumerate(label_loader):
- h = h.to(device)
- y = y.to(device)
- outputs = logreg(model(h))
- loss = criterion(outputs, y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
- metrics["Loss/train"].append(loss.item())
- metrics["Accuracy/train"].append(accuracy)
- if epoch % 100 == 0:
- print("======epoch {}======".format(epoch))
- test_whole(model, logreg, device, test_loader, "test_whole")
- final_accuracy = test_whole(model, logreg, device, test_loader, "test_whole")
- print(metrics)
- return final_accuracy
- class MLP(nn.Module):
- def __init__(self, dim, projection_size, hidden_size=4096):
- super().__init__()
- self.net = nn.Sequential(
- nn.Linear(dim, hidden_size),
- nn.BatchNorm1d(hidden_size),
- nn.ReLU(inplace=True),
- nn.Linear(hidden_size, projection_size),
- )
- def forward(self, x):
- return self.net(x)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--dataset", default="cifar10", type=str, help="cifar10/cifar100.")
- parser.add_argument('--model', default='simsiam', type=str, help='name of the network')
- parser.add_argument("--encoder_network", default="resnet18", type=str, help="Encoder network architecture.")
- parser.add_argument("--model_path", required=True, type=str, help="Path to pre-trained model (e.g. model-10.pt)")
- parser.add_argument("--image_size", default=32, type=int, help="Image size")
- parser.add_argument("--learning_rate", default=1e-3, type=float, help="Initial learning rate.")
- parser.add_argument("--batch_size", default=128, type=int, help="Batch size for training.")
- parser.add_argument("--num_epochs", default=100, type=int, help="Number of epochs to train for.")
- parser.add_argument("--data_distribution", default="class", type=str, help="class/iid")
- parser.add_argument("--label_ratio", default=0.01, type=float, help="ratio of labeled data for fine tune")
- parser.add_argument('--class_per_client', default=2, type=int,
- help='for non-IID setting, number of class each client, based on CIFAR10')
- parser.add_argument("--use_MLP", action='store_true',
- help="whether use MLP, if use, one hidden layer MLP, else, Linear Layer.")
- parser.add_argument("--num_workers", default=8, type=int,
- help="Number of data loading workers (caution with nodes!)")
- args = parser.parse_args()
- print(args)
- device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
- print('==> Preparing data..')
- class_per_client = args.class_per_client
- n_classes = 10
- if args.dataset == CIFAR100:
- class_per_client = 10 * class_per_client
- n_classes = 100
- train_loader, test_loader = get_semi_supervised_data_loaders(args.dataset,
- args.data_distribution,
- class_per_client,
- args.label_ratio,
- args.batch_size,
- args.num_workers)
- print('==> Building model..')
- resnet = get_encoder_network(args.model, args.encoder_network)
- resnet.load_state_dict(torch.load(args.model_path, map_location=device))
- resnet = resnet.to(device)
- num_features = list(resnet.children())[-1].in_features
- resnet.fc = nn.Identity()
-
- if args.use_MLP:
- logreg = MLP(num_features, n_classes, 4096)
- logreg = logreg.to(device)
- else:
- logreg = nn.Sequential(nn.Linear(num_features, n_classes))
- logreg = logreg.to(device)
-
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(params=logreg.parameters(), lr=args.learning_rate)
-
- logreg.train()
- resnet.train()
- accs = []
- for epoch in range(args.num_epochs):
- print("======epoch {}======".format(epoch))
- metrics = defaultdict(list)
- for step, (h, y) in enumerate(train_loader):
- h = h.to(device)
- y = y.to(device)
- outputs = logreg(resnet(h))
- loss = criterion(outputs, y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
- metrics["Loss/train"].append(loss.item())
- metrics["Accuracy/train"].append(accuracy)
- print(f"Epoch [{epoch}/{args.num_epochs}]: " + "\t".join(
- [f"{k}: {np.array(v).mean()}" for k, v in metrics.items()]))
- if epoch % 1 == 0:
- acc = test_whole(resnet, logreg, device, test_loader, args.model_path)
- if epoch <= 100:
- accs.append(acc)
- test_whole(resnet, logreg, device, test_loader, args.model_path)
- print(args.model_path)
- print(f"Best one for 100 epoch is {max(accs):.4f}")
|