123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- import logging
- import os
- from abc import ABC, abstractmethod
- import numpy as np
- import torch
- from torch.utils.data import TensorDataset, DataLoader
- from torchvision.datasets.folder import default_loader, make_dataset
- from easyfl.datasets.dataset_util import TransformDataset, ImageDataset
- from easyfl.datasets.simulation import data_simulation, SIMULATE_IID
- logger = logging.getLogger(__name__)
- TEST_IN_SERVER = "test_in_server"
- TEST_IN_CLIENT = "test_in_client"
- IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
- DEFAULT_MERGED_ID = "Merged"
- def default_process_x(raw_x_batch):
- return torch.tensor(raw_x_batch)
- def default_process_y(raw_y_batch):
- return torch.tensor(raw_y_batch)
- class FederatedDataset(ABC):
- """The abstract class of federated dataset for EasyFL."""
- def __init__(self):
- pass
- @abstractmethod
- def loader(self, batch_size, shuffle=True):
- """Get data loader.
- Args:
- batch_size (int): The batch size of the data loader.
- shuffle (bool): Whether shuffle the data in the loader.
- """
- raise NotImplementedError("Data loader not implemented")
- @abstractmethod
- def size(self, cid):
- """Get dataset size.
- Args:
- cid (str): client id.
- """
- raise NotImplementedError("Size not implemented")
- @property
- def users(self):
- """Get client ids of the federated dataset."""
- raise NotImplementedError("Users not implemented")
- class FederatedTensorDataset(FederatedDataset):
- """Federated tensor dataset, data of clients are in format of tensor or list.
- Args:
- data (dict): A dictionary of data, e.g., {"id1": {"x": [[], [], ...], "y": [...]]}}.
- If simulation is not done previously, it is in format of {'x':[[],[], ...], 'y': [...]}.
- transform (torchvision.transforms.transforms.Compose, optional): Transformation for data.
- target_transform (torchvision.transforms.transforms.Compose, optional): Transformation for data labels.
- process_x (function, optional): A function to preprocess training data.
- process_y (function, optional): A function to preprocess testing data.
- simulated (bool, optional): Whether the dataset is simulated to federated learning settings.
- do_simulate (bool, optional): Whether conduct simulation. It is only effective if it is not simulated.
- num_of_clients (int, optional): number of clients for simulation. Only need if doing simulation.
- simulation_method(optional): split method. Only need if doing simulation.
- weights (list[float], optional): The targeted distribution of quantities to simulate quantity heterogeneity.
- The values should sum up to 1. e.g., [0.1, 0.2, 0.7].
- The `num_of_clients` should be divisible by `len(weights)`.
- None means clients are simulated with the same data quantity.
- alpha (float, optional): The parameter for Dirichlet distribution simulation, only for dir simulation.
- min_size (int, optional): The minimal number of samples in each client, only for dir simulation.
- class_per_client (int, optional): The number of classes in each client, only for non-iid by class simulation.
- """
- def __init__(self,
- data,
- transform=None,
- target_transform=None,
- process_x=default_process_x,
- process_y=default_process_x,
- simulated=False,
- do_simulate=True,
- num_of_clients=10,
- simulation_method=SIMULATE_IID,
- weights=None,
- alpha=0.5,
- min_size=10,
- class_per_client=1):
- super(FederatedTensorDataset, self).__init__()
- self.simulated = simulated
- self.data = data
- self._validate_data(self.data)
- self.process_x = process_x
- self.process_y = process_y
- self.transform = transform
- self.target_transform = target_transform
- if simulated:
- self._users = sorted(list(self.data.keys()))
- elif do_simulate:
-
-
- self.simulation(num_of_clients, simulation_method, weights, alpha, min_size, class_per_client)
- def simulation(self, num_of_clients, niid=SIMULATE_IID, weights=None, alpha=0.5, min_size=10, class_per_client=1):
- if self.simulated:
- logger.warning("The dataset is already simulated, the simulation would not proceed.")
- return
- self._users, self.data = data_simulation(
- self.data['x'],
- self.data['y'],
- num_of_clients,
- niid,
- weights,
- alpha,
- min_size,
- class_per_client)
- self.simulated = True
- def loader(self, batch_size, client_id=None, shuffle=True, seed=0, transform=None, drop_last=False):
- """Get dataset loader.
- Args:
- batch_size (int): The batch size.
- client_id (str, optional): The id of client.
- shuffle (bool, optional): Whether to shuffle before batching.
- seed (int, optional): The shuffle seed.
- transform (torchvision.transforms.transforms.Compose, optional): Data transformation.
- drop_last (bool, optional): Whether to drop the last batch if its size is smaller than batch size.
- Returns:
- torch.utils.data.DataLoader: The data loader to load data.
- """
-
- if client_id is None:
- data = self.data
- else:
- data = self.data[client_id]
- data_x = data['x']
- data_y = data['y']
- data_x = np.array(data_x)
- data_y = np.array(data_y)
- data_x = self._input_process(data_x)
- data_y = self._label_process(data_y)
- if shuffle:
- np.random.seed(seed)
- rng_state = np.random.get_state()
- np.random.shuffle(data_x)
- np.random.set_state(rng_state)
- np.random.shuffle(data_y)
- transform = self.transform if transform is None else transform
- if transform is not None:
- dataset = TransformDataset(data_x,
- data_y,
- transform_x=transform,
- transform_y=self.target_transform)
- else:
- dataset = TensorDataset(data_x, data_y)
- loader = DataLoader(dataset=dataset,
- batch_size=batch_size,
- shuffle=shuffle,
- drop_last=drop_last)
- return loader
- @property
- def users(self):
- return self._users
- @users.setter
- def users(self, value):
- self._users = value
- def size(self, cid=None):
- if cid is not None:
- return len(self.data[cid]['y'])
- else:
- return len(self.data['y'])
- def total_size(self):
- if 'y' in self.data:
- return len(self.data['y'])
- else:
- return sum([len(self.data[i]['y']) for i in self.data])
- def _input_process(self, sample):
- if self.process_x is not None:
- sample = self.process_x(sample)
- return sample
- def _label_process(self, label):
- if self.process_y is not None:
- label = self.process_y(label)
- return label
- def _validate_data(self, data):
- if self.simulated:
- for i in data:
- assert len(data[i]['x']) == len(data[i]['y'])
- else:
- assert len(data['x']) == len(data['y'])
- class FederatedImageDataset(FederatedDataset):
- """
- Federated image dataset, data of clients are in format of image folder.
- Args:
- root (str|list[str]): The root directory or directories of image data folder.
- If the dataset is simulated to multiple clients, the root is a list of directories.
- Otherwise, it is the directory of an image data folder.
- simulated (bool): Whether the dataset is simulated to federated learning settings.
- do_simulate (bool, optional): Whether conduct simulation. It is only effective if it is not simulated.
- extensions (list[str], optional): A list of allowed image extensions.
- Only one of `extensions` and `is_valid_file` can be specified.
- is_valid_file (function, optional): A function that takes path of an Image file and check if it is valid.
- Only one of `extensions` and `is_valid_file` can be specified.
- transform (torchvision.transforms.transforms.Compose, optional): Transformation for data.
- target_transform (torchvision.transforms.transforms.Compose, optional): Transformation for data labels.
- num_of_clients (int, optional): number of clients for simulation. Only need if doing simulation.
- simulation_method(optional): split method. Only need if doing simulation.
- weights (list[float], optional): The targeted distribution of quantities to simulate quantity heterogeneity.
- The values should sum up to 1. e.g., [0.1, 0.2, 0.7].
- The `num_of_clients` should be divisible by `len(weights)`.
- None means clients are simulated with the same data quantity.
- alpha (float, optional): The parameter for Dirichlet distribution simulation, only for dir simulation.
- min_size (int, optional): The minimal number of samples in each client, only for dir simulation.
- class_per_client (int, optional): The number of classes in each client, only for non-iid by class simulation.
- client_ids (list[str], optional): A list of client ids.
- Each client id matches with an element in roots.
- The client ids are ["f0000001", "f00000002", ...] if not specified.
- """
- def __init__(self,
- root,
- simulated,
- do_simulate=True,
- extensions=IMG_EXTENSIONS,
- is_valid_file=None,
- transform=None,
- target_transform=None,
- client_ids="default",
- num_of_clients=10,
- simulation_method=SIMULATE_IID,
- weights=None,
- alpha=0.5,
- min_size=10,
- class_per_client=1):
- super(FederatedImageDataset, self).__init__()
- self.simulated = simulated
- self.transform = transform
- self.target_transform = target_transform
- if self.simulated:
- self.data = {}
- self.classes = {}
- self.class_to_idx = {}
- self.roots = root
- self.num_of_clients = len(self.roots)
- if client_ids == "default":
- self.users = ["f%07.0f" % (i) for i in range(len(self.roots))]
- else:
- self.users = client_ids
- for i in range(self.num_of_clients):
- current_client_id = self.users[i]
- classes, class_to_idx = self._find_classes(self.roots[i])
- samples = make_dataset(self.roots[i], class_to_idx, extensions, is_valid_file)
- if len(samples) == 0:
- msg = "Found 0 files in subfolders of: {}\n".format(self.root)
- if extensions is not None:
- msg += "Supported extensions are: {}".format(",".join(extensions))
- raise RuntimeError(msg)
- self.classes[current_client_id] = classes
- self.class_to_idx[current_client_id] = class_to_idx
- temp_client = {'x': [i[0] for i in samples], 'y': [i[1] for i in samples]}
- self.data[current_client_id] = temp_client
- elif do_simulate:
- self.root = root
- classes, class_to_idx = self._find_classes(self.root)
- samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file)
- if len(samples) == 0:
- msg = "Found 0 files in subfolders of: {}\n".format(self.root)
- if extensions is not None:
- msg += "Supported extensions are: {}".format(",".join(extensions))
- raise RuntimeError(msg)
- self.extensions = extensions
- self.classes = classes
- self.class_to_idx = class_to_idx
- self.samples = samples
- self.inputs = [i[0] for i in self.samples]
- self.labels = [i[1] for i in self.samples]
- self.simulation(num_of_clients, simulation_method, weights, alpha, min_size, class_per_client)
- def simulation(self, num_of_clients, niid="iid", weights=[1], alpha=0.5, min_size=10, class_per_client=1):
- if self.simulated:
- logger.warning("The dataset is already simulated, the simulation would not proceed.")
- return
- self.users, self.data = data_simulation(self.inputs,
- self.labels,
- num_of_clients,
- niid,
- weights,
- alpha,
- min_size,
- class_per_client)
- self.simulated = True
- def loader(self, batch_size, client_id=None, shuffle=True, seed=0, num_workers=2, transform=None):
- """Get dataset loader.
- Args:
- batch_size (int): The batch size.
- client_id (str, optional): The id of client.
- shuffle (bool, optional): Whether to shuffle before batching.
- seed (int, optional): The shuffle seed.
- transform (torchvision.transforms.transforms.Compose, optional): Data transformation.
- num_workers (int, optional): The number of workers for dataset loader.
- Returns:
- torch.utils.data.DataLoader: The data loader to load data.
- """
- assert self.simulated is True
- if client_id is None:
- data = self.data
- else:
- data = self.data[client_id]
- data_x = data['x'][:]
- data_y = data['y'][:]
-
- if shuffle:
- np.random.seed(seed)
- rng_state = np.random.get_state()
- np.random.shuffle(data_x)
- np.random.set_state(rng_state)
- np.random.shuffle(data_y)
- transform = self.transform if transform is None else transform
- dataset = ImageDataset(data_x, data_y, transform, self.target_transform)
- loader = torch.utils.data.DataLoader(dataset,
- batch_size=batch_size,
- shuffle=shuffle,
- num_workers=num_workers,
- pin_memory=False)
- return loader
- @property
- def users(self):
- return self._users
- @users.setter
- def users(self, value):
- self._users = value
- def size(self, cid=None):
- if cid is not None:
- return len(self.data[cid]['y'])
- else:
- return len(self.data['y'])
- def _find_classes(self, dir):
- """Get the classes of the dataset.
- Args:
- dir (str): Root directory path.
- Returns:
- tuple: (classes, class_to_idx) where classes are relative to directory and class_to_idx is a dictionary.
- Note:
- Need to ensure that no class is a subdirectory of another.
- """
- classes = [d.name for d in os.scandir(dir) if d.is_dir()]
- classes.sort()
- class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
- return classes, class_to_idx
- class FederatedTorchDataset(FederatedDataset):
- """Wrapper over PyTorch dataset.
- Args:
- data (dict): A dictionary of client datasets, format {"client_id": dataset1, "client_id2": dataset2}.
- """
- def __init__(self, data, users):
- super(FederatedTorchDataset, self).__init__()
- self.data = data
- self._users = users
- def loader(self, batch_size, client_id=None, shuffle=True, seed=0, num_workers=2, transform=None):
- if client_id is None:
- data = self.data
- else:
- data = self.data[client_id]
- loader = torch.utils.data.DataLoader(
- data, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True)
- return loader
- @property
- def users(self):
- return self._users
- @users.setter
- def users(self, value):
- self._users = value
- def size(self, cid=None):
- if cid is not None:
- return len(self.data[cid])
- else:
- return len(self.data)
|