client_with_pgfed.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import copy
  2. import gc
  3. import logging
  4. import time
  5. from collections import Counter
  6. import numpy as np
  7. import torch
  8. import torch._utils
  9. import torch.nn as nn
  10. import torch.nn.functional as F
  11. import model
  12. import utils
  13. from communication import ONLINE, TARGET, BOTH, LOCAL, GLOBAL, DAPU, NONE, EMA, DYNAMIC_DAPU, DYNAMIC_EMA_ONLINE, SELECTIVE_EMA
  14. from easyfl.client.base import BaseClient
  15. from easyfl.distributed.distributed import CPU
  16. from client import FedSSLClient
  17. logger = logging.getLogger(__name__)
  18. L2 = "l2"
  19. def model_dot_product(w1, w2, requires_grad=True):
  20. """ Return the sum of squared difference between two models. """
  21. print(w1)
  22. print(w2)
  23. dot_product = 0.0
  24. for p1, p2 in zip(w1.parameters(), w2.parameters()):
  25. if requires_grad:
  26. dot_product += torch.sum(p1 * p2)
  27. else:
  28. dot_product += torch.sum(p1.data * p2.data)
  29. return dot_product
  30. class FedSSLWithPgFedClient(FedSSLClient):
  31. def __init__(self, cid, conf, train_data, test_data, device, sleep_time=0):
  32. super(FedSSLWithPgFedClient, self).__init__(cid, conf, train_data, test_data, device, sleep_time)
  33. self._local_model = None
  34. self.DAPU_predictor = LOCAL
  35. self.encoder_distance = 1
  36. self.encoder_distances = []
  37. self.previous_trained_round = -1
  38. self.weight_scaler = None
  39. self.latest_grad = None
  40. self.lambdaa = 1.0 # PGFed learning rate for a_i, Regularization weight for pFedMe
  41. self.prev_loss_minuses = {}
  42. self.prev_mean_grad = None
  43. self.prev_convex_comb_grad = None
  44. self.a_i = None
  45. def train(self, conf, device=CPU):
  46. start_time = time.time()
  47. loss_fn, optimizer = self.pretrain_setup(conf, device)
  48. if conf.model in [model.MoCo, model.MoCoV2]:
  49. self.model.reset_key_encoder()
  50. self.train_loss = []
  51. self.model.to(device)
  52. old_model = copy.deepcopy(nn.Sequential(*list(self.model.children())[:-1])).cpu()
  53. for i in range(conf.local_epoch):
  54. data_count = 0 # delete later
  55. batch_loss = []
  56. for (batched_x1, batched_x2), _ in self.train_loader:
  57. if data_count >= 50:
  58. break
  59. x1, x2 = batched_x1.to(device), batched_x2.to(device)
  60. data_count += x1.size(0)
  61. optimizer.zero_grad()
  62. if conf.model in [model.MoCo, model.MoCoV2]:
  63. loss = self.model(x1, x2, device)
  64. elif conf.model == model.SimCLR:
  65. images = torch.cat((x1, x2), dim=0)
  66. features = self.model(images)
  67. logits, labels = self.info_nce_loss(features)
  68. loss = loss_fn(logits, labels)
  69. else:
  70. loss = self.model(x1, x2)
  71. loss.backward()
  72. if self.prev_convex_comb_grad is not None:
  73. for p_m, p_prev_conv in zip(self.model.parameters(), self.prev_convex_comb_grad.parameters()):
  74. p_m.grad.data += p_prev_conv.data
  75. dot_prod = model_dot_product(self.model, self.prev_mean_grad, requires_grad=False)
  76. self.update_a_i(dot_prod)
  77. optimizer.step()
  78. batch_loss.append(loss.item())
  79. if conf.model in [model.BYOL, model.BYOLNoSG, model.BYOLNoPredictor] and conf.momentum_update:
  80. self.model.update_moving_average()
  81. current_epoch_loss = sum(batch_loss) / len(batch_loss)
  82. self.train_loss.append(float(current_epoch_loss))
  83. self.loss_minus = 0.0
  84. test_num = 0
  85. optimizer.zero_grad()
  86. data_count = 0 # delete later
  87. for (batched_x1, batched_x2), _ in self.train_loader:
  88. if data_count >= 50:
  89. break
  90. x1, x2 = batched_x1.to(self.device), batched_x2.to(self.device)
  91. data_count += x1.size(0)
  92. test_num += x1.size(0)
  93. if conf.model in [model.MoCo, model.MoCoV2]:
  94. loss = self.model(x1, x2, device)
  95. elif conf.model == model.SimCLR:
  96. images = torch.cat((x1, x2), dim=0)
  97. features = self.model(images)
  98. logits, labels = self.info_nce_loss(features)
  99. loss = loss_fn(logits, labels)
  100. else:
  101. loss = self.model(x1, x2)
  102. self.loss_minus += loss.item() * x1.size(0)
  103. self.loss_minus /= test_num
  104. if not self.latest_grad:
  105. self.latest_grad = copy.deepcopy(self.model)
  106. # delete later
  107. # all_grads_none = True
  108. # for p_l, p in zip(self.latest_grad.parameters(), self.model.parameters()):
  109. # if p.grad is not None:
  110. # p_l.data = p.grad.data.clone() / len(self.train_loader)
  111. # all_grads_none = False
  112. # else:
  113. # p_l.data = torch.zeros_like(p_l.data)
  114. # if all_grads_none:
  115. # print("All None")
  116. self.loss_minus -= model_dot_product(self.latest_grad, self.model, requires_grad=False)
  117. self.train_time = time.time() - start_time
  118. # store trained model locally
  119. # self._local_model = copy.deepcopy(self.model).cpu()
  120. # self.previous_trained_round = conf.round_id
  121. # if conf.update_predictor in [DAPU, DYNAMIC_DAPU, SELECTIVE_EMA] or conf.update_encoder in [DYNAMIC_EMA_ONLINE, SELECTIVE_EMA]:
  122. # new_model = copy.deepcopy(nn.Sequential(*list(self.model.children())[:-1])).cpu()
  123. # self.encoder_distance = self._calculate_divergence(old_model, new_model)
  124. # self.encoder_distances.append(self.encoder_distance.item())
  125. # self.DAPU_predictor = self._DAPU_predictor_usage(self.encoder_distance)
  126. # if self.conf.auto_scaler == 'y' and self.conf.random_selection:
  127. # self._calculate_weight_scaler()
  128. # if (conf.round_id + 1) % 100 == 0:
  129. # logger.info(f"Client {self.cid}, encoder distances: {self.encoder_distances}")
  130. def update_a_i(self, dot_prod):
  131. for clt_j, mu_loss_minus in self.prev_loss_minuses.items():
  132. self.a_i[clt_j] -= self.lambdaa * (mu_loss_minus + dot_prod)
  133. self.a_i[clt_j] = max(self.a_i[clt_j], 0.0)
  134. def set_prev_mean_grad(self, mean_grad):
  135. if self.prev_mean_grad is None:
  136. self.prev_mean_grad = copy.deepcopy(mean_grad)
  137. else:
  138. self.set_model(self.prev_mean_grad, mean_grad)
  139. def set_prev_convex_comb_grad(self, convex_comb_grad, momentum=0.0):
  140. if self.prev_convex_comb_grad is None:
  141. self.prev_convex_comb_grad = copy.deepcopy(convex_comb_grad)
  142. else:
  143. self.set_model(self.prev_convex_comb_grad, convex_comb_grad, momentum=momentum)
  144. def set_model(self, old_m, new_m, momentum=0.0):
  145. for p_old, p_new in zip(old_m.parameters(), new_m.parameters()):
  146. p_old.data = (1 - momentum) * p_new.data.clone() + momentum * p_old.data.clone()