# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import pandas from pipeline.utils.tools import JobConfig from sklearn.linear_model import SGDClassifier from sklearn.metrics import precision_score, accuracy_score, recall_score def main(config="../../config.yaml", param="./vechile_config.yaml"): # obtain config if isinstance(param, str): param = JobConfig.load_from_file(param) assert isinstance(param, dict) data_guest = param["data_guest"] data_host = param["data_host"] idx = param["idx"] label_name = param["label_name"] if isinstance(config, str): config = JobConfig.load_from_file(config) data_base_dir = config["data_base_dir"] else: data_base_dir = config.data_base_dir config_param = { "penalty": param["penalty"], "max_iter": param["max_iter"], "alpha": param["alpha"], "learning_rate": "optimal", "eta0": param["learning_rate"], "random_state": 105 } # prepare data df_guest = pandas.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx) df_host = pandas.read_csv(os.path.join(data_base_dir, data_host), index_col=idx) df = df_guest.join(df_host, rsuffix="host") y = df[label_name] X = df.drop(label_name, axis=1) # lm = LogisticRegression(max_iter=20) lm = SGDClassifier(loss="log", **config_param, shuffle=False) lm_fit = lm.fit(X, y) y_pred = lm_fit.predict(X) recall = recall_score(y, y_pred, average="macro") pr = precision_score(y, y_pred, average="macro") acc = accuracy_score(y, y_pred) result = {"accuracy": acc} print(result) return {}, result if __name__ == "__main__": parser = argparse.ArgumentParser("BENCHMARK-QUALITY SKLEARN JOB") parser.add_argument("-param", type=str, help="config file for params") args = parser.parse_args() if args.param is not None: main(args.param)