# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import pandas as pd import os from sklearn.metrics import roc_auc_score from sklearn.ensemble import GradientBoostingClassifier from pipeline.utils.tools import JobConfig def main(config="../../config.yaml", param="./gbdt_config_binary.yaml"): # obtain config if isinstance(param, str): param = JobConfig.load_from_file(param) data_guest = param["data_guest"] data_host = param["data_host"] idx = param["idx"] label_name = param["label_name"] print('config is {}'.format(config)) if isinstance(config, str): config = JobConfig.load_from_file(config) data_base_dir = config["data_base_dir"] print('data base dir is', data_base_dir) else: data_base_dir = config.data_base_dir # prepare data df_guest = pd.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx) df_host = pd.read_csv(os.path.join(data_base_dir, data_host), index_col=idx) df = pd.concat([df_guest, df_host], axis=0) y = df[label_name] X = df.drop(label_name, axis=1) X_guest = df_guest.drop(label_name, axis=1) y_guest = df_guest[label_name] clf = GradientBoostingClassifier(n_estimators=120 if 'epsilon' in data_guest else 50, learning_rate=0.1) clf.fit(X, y) y_prob = clf.predict(X_guest) try: auc_score = roc_auc_score(y_guest, y_prob) except BaseException: print(f"no auc score available") return result = {"auc": auc_score} import time print(result) print(data_guest) time.sleep(3) return {}, result if __name__ == "__main__": parser = argparse.ArgumentParser("BENCHMARK-QUALITY SKLEARN JOB") parser.add_argument("-param", type=str, help="config file for params") args = parser.parse_args() if args.config is not None: main(args.param) main()