# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import torch as t from torch import nn from pipeline import fate_torch_hook from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import Evaluation from pipeline.component import HeteroNN from pipeline.component import Intersection from pipeline.component import Reader from pipeline.interface import Data from pipeline.utils.tools import load_job_config fate_torch_hook(t) def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": "experiment"} host_train_data = {"name": "breast_hetero_host", "namespace": "experiment"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True) data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") hetero_nn_0 = HeteroNN(name="hetero_nn_0", epochs=5, interactive_layer_lr=0.01, batch_size=128, validation_freqs=1, task_type='classification', selector_param={"method": "relative"}) guest_nn_0 = hetero_nn_0.get_party_instance(role='guest', party_id=guest) host_nn_0 = hetero_nn_0.get_party_instance(role='host', party_id=host) # define model guest_bottom = t.nn.Sequential( nn.Linear(10, 4), nn.ReLU(), nn.Dropout(p=0.2) ) guest_top = t.nn.Sequential( nn.Linear(4, 1), nn.Sigmoid() ) host_bottom = t.nn.Sequential( nn.Linear(20, 4), nn.ReLU(), nn.Dropout(p=0.2) ) # use interactive layer after fate_torch_hook # add drop out in this layer interactive_layer = t.nn.InteractiveLayer(out_dim=4, guest_dim=4, host_dim=4, host_num=1, dropout=0.2) guest_nn_0.add_top_model(guest_top) guest_nn_0.add_bottom_model(guest_bottom) host_nn_0.add_bottom_model(host_bottom) optimizer = t.optim.Adam(lr=0.01) # you can initialize optimizer without parameters after fate_torch_hook loss = t.nn.BCELoss() hetero_nn_0.set_interactive_layer(interactive_layer) hetero_nn_0.compile(optimizer=optimizer, loss=loss) evaluation_0 = Evaluation(name='eval_0', eval_type='binary') # define components IO pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_nn_0, data=Data(train_data=intersection_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_nn_0.output.data)) pipeline.compile() pipeline.fit() print(pipeline.get_component("hetero_nn_0").get_summary()) if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()