# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import HeteroSSHELinR from pipeline.component import Intersection from pipeline.component import Reader from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="motor_speed", label_type="float", output_format="dense") data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") hetero_linr_0 = HeteroSSHELinR(name="hetero_linr_0", penalty="None", optimizer="sgd", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, decay=0.0, decay_sqrt=False, init_param={"init_method": "zeros"}, cv_param={"n_splits": 5, "shuffle": False, "random_seed": 42, "need_cv": False }, reveal_strategy="encrypted_reveal_in_host", reveal_every_iter=False ) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data)) pipeline.compile() pipeline.fit() # predict # deploy required components pipeline.deploy_component([data_transform_0, intersection_0, hetero_linr_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component(pipeline, data=Data( predict_input={pipeline.data_transform_0.input.data: reader_0.output.data})) # run predict model predict_pipeline.predict() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()