# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import json from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component.evaluation import Evaluation from pipeline.component.hetero_sshe_lr import HeteroSSHELR from pipeline.component.intersection import Intersection from pipeline.component.reader import Reader from pipeline.interface.data import Data from pipeline.interface.model import Model from pipeline.utils.tools import load_job_config def prettify(response, verbose=True): if verbose: print(json.dumps(response, indent=4, ensure_ascii=False)) print() return response def main(config="../../config.yaml", namespace=""): if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"} guest_eval_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} host_eval_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data) reader_1 = Reader(name="reader_1") reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_eval_data) reader_1.get_party_instance(role='host', party_id=hosts).component_param(table=host_eval_data) data_transform_0 = DataTransform(name="data_transform_0", output_format='dense') data_transform_1 = DataTransform(name="data_transform_1", output_format='dense') # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(with_label=True) # get and configure DataTransform party instance of host data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") intersection_1 = Intersection(name="intersection_1") pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data)) lr_param = { "name": "hetero_sshe_lr_0", "penalty": "L2", "optimizer": "rmsprop", "tol": 0.0001, "alpha": 0.01, "max_iter": 30, "early_stop": "diff", "batch_size": -1, "callback_param": { "callbacks": [ "EarlyStopping", "PerformanceEvaluate" ], "validation_freqs": 1, "early_stopping_rounds": 3 }, "learning_rate": 0.15, "init_param": { "init_method": "zeros" }, "reveal_strategy": "respectively", "reveal_every_iter": True } hetero_sshe_lr_0 = HeteroSSHELR(**lr_param) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data, validate_data=intersection_1.output.data)) evaluation_data = [hetero_sshe_lr_0.output.data] hetero_sshe_lr_1 = HeteroSSHELR(name='hetero_sshe_lr_1') pipeline.add_component(hetero_sshe_lr_1, data=Data(test_data=intersection_1.output.data), model=Model(hetero_sshe_lr_0.output.model)) evaluation_data.append(hetero_sshe_lr_1.output.data) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(evaluation_0, data=Data(data=evaluation_data)) pipeline.compile() # fit model pipeline.fit() # query component summary prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary()) prettify(pipeline.get_component("evaluation_0").get_summary()) return pipeline if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()