# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse # torch import torch as t from torch import nn from pipeline import fate_torch_hook # pipeline from pipeline.backend.pipeline import PipeLine from pipeline.component import Reader, DataTransform, HomoNN, Evaluation from pipeline.component.nn import TrainerParam from pipeline.interface import Data from pipeline.utils.tools import load_job_config fate_torch_hook(t) def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) train_data_0 = {"name": "breast_homo_guest", "namespace": "experiment"} train_data_1 = {"name": "breast_homo_host", "namespace": "experiment"} reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=train_data_0) reader_0.get_party_instance(role='host', party_id=host).component_param(table=train_data_1) data_transform_0 = DataTransform(name='data_transform_0') data_transform_0.get_party_instance( role='guest', party_id=guest).component_param( with_label=True, output_format="dense") data_transform_0.get_party_instance( role='host', party_id=host).component_param( with_label=True, output_format="dense") model = nn.Sequential( nn.Linear(30, 1), nn.Sigmoid() ) loss = nn.BCELoss() optimizer = t.optim.Adam(model.parameters(), lr=0.01) nn_component = HomoNN(name='nn_0', model=model, loss=loss, optimizer=optimizer, trainer=TrainerParam(trainer_name='fedavg_trainer', epochs=20, batch_size=128, validation_freqs=1), torch_seed=100 ) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(nn_component, data=Data(train_data=data_transform_0.output.data)) pipeline.add_component(Evaluation(name='eval_0'), data=Data(data=nn_component.output.data)) pipeline.compile() pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()