#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pipeline.param.base_param import BaseParam class DataTransformParam(BaseParam): """ Define data_transform parameters that used in federated ml. Parameters ---------- input_format : str, accepted 'dense','sparse' 'tag' only in this version. default: 'dense'. please have a look at this tutorial at "DataTransform" section of federatedml/util/README.md. Formally, dense input format data should be set to "dense", svm-light input format data should be set to "sparse", tag or tag:value input format data should be set to "tag". delimitor : str, the delimitor of data input, default: ',' data_type : str, the data type of data input, accepted 'float','float64','int','int64','str','long' "default: "float64" exclusive_data_type : dict, the key of dict is col_name, the value is data_type, use to specified special data type of some features. tag_with_value: bool, use if input_format is 'tag', if tag_with_value is True, input column data format should be tag[delimitor]value, otherwise is tag only tag_value_delimitor: str, use if input_format is 'tag' and 'tag_with_value' is True, delimitor of tag[delimitor]value column value. missing_fill : bool, need to fill missing value or not, accepted only True/False, default: True default_value : None or single object type or list, the value to replace missing value. if None, it will use default value define in federatedml/feature/imputer.py, if single object, will fill missing value with this object, if list, it's length should be the sample of input data' feature dimension, means that if some column happens to have missing values, it will replace it the value by element in the identical position of this list. default: None missing_fill_method: None or str, the method to replace missing value, should be one of [None, 'min', 'max', 'mean', 'designated'], default: None missing_impute: None or list, element of list can be any type, or auto generated if value is None, define which values to be consider as missing, default: None outlier_replace: bool, need to replace outlier value or not, accepted only True/False, default: True outlier_replace_method: None or str, the method to replace missing value, should be one of [None, 'min', 'max', 'mean', 'designated'], default: None outlier_impute: None or list, element of list can be any type, which values should be regard as missing value, default: None outlier_replace_value: None or single object type or list, the value to replace outlier. if None, it will use default value define in federatedml/feature/imputer.py, if single object, will replace outlier with this object, if list, it's length should be the sample of input data' feature dimension, means that if some column happens to have outliers, it will replace it the value by element in the identical position of this list. default: None with_label : bool, True if input data consist of label, False otherwise. default: 'false' label_name : str, column_name of the column where label locates, only use in dense-inputformat. default: 'y' label_type : object, accepted 'int','int64','float','float64','long','str' only, use when with_label is True. default: 'false' output_format : str, accepted 'dense','sparse' only in this version. default: 'dense' with_match_id: bool, True if dataset has match_id, default: False """ def __init__(self, input_format="dense", delimitor=',', data_type='float64', exclusive_data_type=None, tag_with_value=False, tag_value_delimitor=":", missing_fill=False, default_value=0, missing_fill_method=None, missing_impute=None, outlier_replace=False, outlier_replace_method=None, outlier_impute=None, outlier_replace_value=0, with_label=False, label_name='y', label_type='int', output_format='dense', need_run=True, with_match_id=False, match_id_name='', match_id_index=0): self.input_format = input_format self.delimitor = delimitor self.data_type = data_type self.exclusive_data_type = exclusive_data_type self.tag_with_value = tag_with_value self.tag_value_delimitor = tag_value_delimitor self.missing_fill = missing_fill self.default_value = default_value self.missing_fill_method = missing_fill_method self.missing_impute = missing_impute self.outlier_replace = outlier_replace self.outlier_replace_method = outlier_replace_method self.outlier_impute = outlier_impute self.outlier_replace_value = outlier_replace_value self.with_label = with_label self.label_name = label_name self.label_type = label_type self.output_format = output_format self.need_run = need_run self.with_match_id = with_match_id self.match_id_name = match_id_name self.match_id_index = match_id_index def check(self): descr = "data_transform param's" self.input_format = self.check_and_change_lower(self.input_format, ["dense", "sparse", "tag"], descr) self.output_format = self.check_and_change_lower(self.output_format, ["dense", "sparse"], descr) self.data_type = self.check_and_change_lower(self.data_type, ["int", "int64", "float", "float64", "str", "long"], descr) if type(self.missing_fill).__name__ != 'bool': raise ValueError("data_transform param's missing_fill {} not supported".format(self.missing_fill)) if self.missing_fill_method is not None: self.missing_fill_method = self.check_and_change_lower(self.missing_fill_method, ['min', 'max', 'mean', 'designated'], descr) if self.outlier_replace_method is not None: self.outlier_replace_method = self.check_and_change_lower(self.outlier_replace_method, ['min', 'max', 'mean', 'designated'], descr) if type(self.with_label).__name__ != 'bool': raise ValueError("data_transform param's with_label {} not supported".format(self.with_label)) if self.with_label: if not isinstance(self.label_name, str): raise ValueError("data_transform param's label_name {} should be str".format(self.label_name)) self.label_type = self.check_and_change_lower(self.label_type, ["int", "int64", "float", "float64", "str", "long"], descr) if self.exclusive_data_type is not None and not isinstance(self.exclusive_data_type, dict): raise ValueError("exclusive_data_type is should be None or a dict") return True