#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pipeline.param.base_param import BaseParam from pipeline.param import consts class ScaleParam(BaseParam): """ Define the feature scale parameters. Parameters ---------- method : {"standard_scale", "min_max_scale"} like scale in sklearn, now it support "min_max_scale" and "standard_scale", and will support other scale method soon. Default standard_scale, which will do nothing for scale mode : {"normal", "cap"} for mode is "normal", the feat_upper and feat_lower is the normal value like "10" or "3.1" and for "cap", feat_upper and feature_lower will between 0 and 1, which means the percentile of the column. Default "normal" feat_upper : int or float or list of int or float the upper limit in the column. If use list, mode must be "normal", and list length should equal to the number of features to scale. If the scaled value is larger than feat_upper, it will be set to feat_upper feat_lower: int or float or list of int or float the lower limit in the column. If use list, mode must be "normal", and list length should equal to the number of features to scale. If the scaled value is less than feat_lower, it will be set to feat_lower scale_col_indexes: list the idx of column in scale_column_idx will be scaled, while the idx of column is not in, it will not be scaled. scale_names : list of string Specify which columns need to scaled. Each element in the list represent for a column name in header. default: [] with_mean : bool used for "standard_scale". Default True. with_std : bool used for "standard_scale". Default True. The standard scale of column x is calculated as : $z = (x - u) / s$ , where $u$ is the mean of the column and $s$ is the standard deviation of the column. if with_mean is False, $u$ will be 0, and if with_std is False, $s$ will be 1. need_run : bool Indicate if this module needed to be run, default True """ def __init__(self, method="standard_scale", mode="normal", scale_col_indexes=-1, scale_names=None, feat_upper=None, feat_lower=None, with_mean=True, with_std=True, need_run=True): super().__init__() self.scale_names = [] if scale_names is None else scale_names self.method = method self.mode = mode self.feat_upper = feat_upper # LOGGER.debug("self.feat_upper:{}, type:{}".format(self.feat_upper, type(self.feat_upper))) self.feat_lower = feat_lower self.scale_col_indexes = scale_col_indexes self.scale_names = scale_names self.with_mean = with_mean self.with_std = with_std self.need_run = need_run def check(self): if self.method is not None: descr = "scale param's method" self.method = self.check_and_change_lower(self.method, [consts.MINMAXSCALE, consts.STANDARDSCALE], descr) descr = "scale param's mode" self.mode = self.check_and_change_lower(self.mode, [consts.NORMAL, consts.CAP], descr) # LOGGER.debug("self.feat_upper:{}, type:{}".format(self.feat_upper, type(self.feat_upper))) # if type(self.feat_upper).__name__ not in ["float", "int"]: # raise ValueError("scale param's feat_upper {} not supported, should be float or int".format( # self.feat_upper)) if self.scale_col_indexes != -1 and not isinstance(self.scale_col_indexes, list): raise ValueError("scale_col_indexes is should be -1 or a list") if self.scale_names is None: self.scale_names = [] if not isinstance(self.scale_names, list): raise ValueError("scale_names is should be a list of string") else: for e in self.scale_names: if not isinstance(e, str): raise ValueError("scale_names is should be a list of string") self.check_boolean(self.with_mean, "scale_param with_mean") self.check_boolean(self.with_std, "scale_param with_std") self.check_boolean(self.need_run, "scale_param need_run") return True