# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from federatedml.feature.sparse_vector import SparseVector class TestSparseVector(unittest.TestCase): def setUp(self): pass def test_instance(self): indices = [] data = [] for i in range(1, 10): indices.append(i * i) data.append(i ** 3) shape = 100 sparse_data = SparseVector(indices, data, shape) self.assertTrue(sparse_data.shape == shape and len(sparse_data.sparse_vec) == 9) self.assertTrue(sparse_data.count_zeros() == 91) self.assertTrue(sparse_data.count_non_zeros() == 9) for idx, val in zip(indices, data): self.assertTrue(sparse_data.get_data(idx) == val) for i in range(100): if i in indices: continue self.assertTrue(sparse_data.get_data(i, i ** 4) == i ** 4) self.assertTrue(dict(sparse_data.get_all_data()) == dict(zip(indices, data))) if __name__ == '__main__': unittest.main()