# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import pandas import numpy as np import os from sklearn.linear_model import SGDRegressor from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score from pipeline.utils.tools import JobConfig def main(config="../../config.yaml", param="./linr_config.yaml"): # obtain config if isinstance(param, str): param = JobConfig.load_from_file(param) data_guest = param["data_guest"] data_host = param["data_host"] idx = param["idx"] label_name = param["label_name"] if isinstance(config, str): config = JobConfig.load_from_file(config) data_base_dir = config["data_base_dir"] else: data_base_dir = config.data_base_dir # prepare data df_guest = pandas.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx) df_host = pandas.read_csv(os.path.join(data_base_dir, data_host), index_col=idx) df = df_guest.join(df_host, rsuffix="host") y = df[label_name] X = df.drop(label_name, axis=1) lm = SGDRegressor(loss="squared_loss", penalty=param["penalty"], random_state=42, fit_intercept=True, max_iter=param["max_iter"], average=param["batch_size"]) lm_fit = lm.fit(X, y) y_pred = lm_fit.predict(X) mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) r2 = r2_score(y, y_pred) explained_var = explained_variance_score(y, y_pred) metric_summary = {"r2_score": r2, "mean_squared_error": mse, "root_mean_squared_error": rmse, "explained_variance": explained_var} data_summary = {} return data_summary, metric_summary if __name__ == "__main__": parser = argparse.ArgumentParser("BENCHMARK-QUALITY LOCAL JOB") parser.add_argument("-param", type=str, help="config file for params") args = parser.parse_args() if args.param is not None: main(args.param) else: main()