# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import pandas from sklearn.linear_model import SGDClassifier from sklearn.metrics import roc_auc_score, precision_score, accuracy_score, recall_score, roc_curve from pipeline.utils.tools import JobConfig import os def main(config="../../config.yaml", param="./lr_config.yaml"): # obtain config if isinstance(param, str): param = JobConfig.load_from_file(param) assert isinstance(param, dict) data_guest = param["data_guest"] data_host = param["data_host"] data_test = param["data_test"] idx = param["idx"] label_name = param["label_name"] if isinstance(config, str): config = JobConfig.load_from_file(config) data_base_dir = config["data_base_dir"] else: data_base_dir = config.data_base_dir config_param = { "penalty": param["penalty"], "max_iter": 100, "alpha": param["alpha"], "learning_rate": "optimal", "eta0": param["learning_rate"] } # prepare data df_guest = pandas.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx) df_host = pandas.read_csv(os.path.join(data_base_dir, data_host), index_col=idx) # df_test = pandas.read_csv(data_test, index_col=idx) df = pandas.concat([df_guest, df_host], axis=0) # df = df_guest.join(df_host, rsuffix="host") y_train = df[label_name] x_train = df.drop(label_name, axis=1) # y_test = df_test[label_name] # x_test = df_test.drop(label_name, axis=1) x_test, y_test = x_train, y_train # lm = LogisticRegression(max_iter=20) lm = SGDClassifier(loss="log", **config_param) lm_fit = lm.fit(x_train, y_train) y_pred = lm_fit.predict(x_test) y_prob = lm_fit.predict_proba(x_test)[:, 1] auc_score = roc_auc_score(y_test, y_prob) recall = recall_score(y_test, y_pred, average="macro") pr = precision_score(y_test, y_pred, average="macro") acc = accuracy_score(y_test, y_pred) # y_predict_proba = est.predict_proba(X_test)[:, 1] fpr, tpr, thresholds = roc_curve(y_test, y_prob) ks = max(tpr - fpr) result = {"auc": auc_score} print(f"result: {result}") print(f"coef_: {lm_fit.coef_}, intercept_: {lm_fit.intercept_}, n_iter: {lm_fit.n_iter_}") return {}, result if __name__ == "__main__": parser = argparse.ArgumentParser("BENCHMARK-QUALITY SKLEARN JOB") parser.add_argument("-p", "--param", type=str, default="./lr_config.yaml", help="config file for params") args = parser.parse_args() main(args.param)