# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import HomoSecureBoost from pipeline.component import Reader from pipeline.interface.data import Data from pipeline.component import Evaluation from pipeline.interface.model import Model from pipeline.utils.tools import JobConfig from pipeline.utils.tools import load_job_config from federatedml.evaluation.metrics import regression_metric, classification_metric from fate_test.utils import extract_data, parse_summary_result def main(config="../../config.yaml", param='./xgb_config_binary.yaml', namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) if isinstance(param, str): param = JobConfig.load_from_file(param) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = {"name": param['data_guest_train'], "namespace": f"experiment{namespace}"} guest_validate_data = {"name": param['data_guest_val'], "namespace": f"experiment{namespace}"} host_train_data = {"name": param['data_host_train'], "namespace": f"experiment{namespace}"} host_validate_data = {"name": param['data_host_val'], "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) data_transform_0, data_transform_1 = DataTransform(name="data_transform_0"), DataTransform(name='data_transform_1') reader_0, reader_1 = Reader(name="reader_0"), Reader(name='reader_1') reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0.get_party_instance(role='guest', party_id=guest).\ component_param(with_label=True, output_format="dense") data_transform_0.get_party_instance(role='host', party_id=host).\ component_param(with_label=True, output_format="dense") reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_validate_data) reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_validate_data) data_transform_1.get_party_instance(role='guest', party_id=guest).\ component_param(with_label=True, output_format="dense") data_transform_1.get_party_instance(role='host', party_id=host).\ component_param(with_label=True, output_format="dense") homo_secureboost_0 = HomoSecureBoost(name="homo_secureboost_0", num_trees=param['tree_num'], task_type=param['task_type'], objective_param={"objective": param['loss_func']}, tree_param={"max_depth": param['tree_depth']}, validation_freqs=1, subsample_feature_rate=1, learning_rate=param['learning_rate'], bin_num=50 ) homo_secureboost_1 = HomoSecureBoost(name="homo_secureboost_1") evaluation_0 = Evaluation(name='evaluation_0', eval_type=param['eval_type']) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(reader_1) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(homo_secureboost_0, data=Data(train_data=data_transform_0.output.data, validate_data=data_transform_1.output.data)) pipeline.add_component(homo_secureboost_1, data=Data(test_data=data_transform_1.output.data), model=Model(homo_secureboost_0.output.model)) pipeline.add_component(evaluation_0, data=Data(homo_secureboost_0.output.data)) pipeline.compile() pipeline.fit() sbt_0_data = pipeline.get_component("homo_secureboost_0").get_output_data() sbt_1_data = pipeline.get_component("homo_secureboost_1").get_output_data() sbt_0_score = extract_data(sbt_0_data, "predict_result") sbt_0_label = extract_data(sbt_0_data, "label") sbt_1_score = extract_data(sbt_1_data, "predict_result") sbt_1_label = extract_data(sbt_1_data, "label") sbt_0_score_label = extract_data(sbt_0_data, "predict_result", keep_id=True) sbt_1_score_label = extract_data(sbt_1_data, "predict_result", keep_id=True) metric_summary = parse_summary_result(pipeline.get_component("evaluation_0").get_summary()) if param['eval_type'] == "regression": desc_sbt_0 = regression_metric.Describe().compute(sbt_0_score) desc_sbt_1 = regression_metric.Describe().compute(sbt_1_score) metric_summary["script_metrics"] = {"sbt_train": desc_sbt_0, "sbt_validate": desc_sbt_1} elif param['eval_type'] == "binary": metric_sbt = { "score_diversity_ratio": classification_metric.Distribution.compute(sbt_0_score_label, sbt_1_score_label), "ks_2samp": classification_metric.KSTest.compute(sbt_0_score, sbt_1_score), "mAP_D_value": classification_metric.AveragePrecisionScore().compute(sbt_0_score, sbt_1_score, sbt_0_label, sbt_1_label)} metric_summary["distribution_metrics"] = {"homo_sbt": metric_sbt} elif param['eval_type'] == "multi": metric_sbt = { "score_diversity_ratio": classification_metric.Distribution.compute(sbt_0_score_label, sbt_1_score_label)} metric_summary["distribution_metrics"] = {"homo_sbt": metric_sbt} data_summary = {"train": {"guest": guest_train_data["name"], "host": host_train_data["name"]}, "test": {"guest": guest_validate_data["name"], "host": host_validate_data["name"]} } return data_summary, metric_summary if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()