## Hetero Linear Regression Configuration Usage Guide. #### Example Tasks This section introduces the dsl and conf for different types of tasks. 1. Train Task: dsl: test_hetero_linr_train_job_dsl.json runtime_config : test_hetero_linr_train_job_conf.json 2. Predict Task: dsl: test_hetero_linr_predict_job_dsl.json runtime_config: test_hetero_linr_predict_job_conf.json 3. Warm Start Task: dsl: test_hetero_linr_warm_start_job_dsl.json runtime_config: test_hetero_linr_warm_start_job_conf.json 4. Validate Task (with early-stopping parameters specified): dsl: test_hetero_linr_validate_job_dsl.json runtime_config : test_hetero_linr_validate_job_conf.json 5. Cross Validation Task(with fold history data output of instance value): dsl: test_hetero_linr_cv_job_dsl.json runtime_config: test_hetero_linr_cv_job_conf.json 6. Multi-host Train Task: dsl: test_hetero_linr_train_job_dsl.json conf: test_hetero_linr_multi_host_train_job_conf.json 7. Multi-host Predict Task: dsl: test_hetero_linr_multi_host_predict_job_dsl.json conf: test_hetero_linr_multi_host_predict_job_conf.json 8. Multi-host Cross Validation Task: dsl: test_hetero_linr_multi_host_cv_job_dsl.json conf: test_hetero_linr_multi_host_cv_job_conf.json 9. Train Task with Sparse Data: dsl: test_hetero_linr_train_sparse_job_job_dsl.json runtime_config : test_hetero_linr_train_sparse_job_conf.json 9. Train Task with Weighted Instances: dsl: test_hetero_linr_train_sample_weight_job_job_dsl.json runtime_config : test_hetero_linr_train_sample_weight_job_conf.json Users can use following commands to run a task. flow job submit -c ${runtime_config} -d ${dsl} After having finished a successful training task, you can use it to predict, you can use the obtained model to perform prediction. You need to add the corresponding model id and model version to the configuration [file](./test_hetero_linr_predict_job_conf.json)