# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import HeteroFeatureBinning, HeteroFeatureSelection, DataStatistics, Evaluation from pipeline.component.hetero_secureboost import HeteroSecureBoost from pipeline.component import DataTransform from pipeline.component import Intersection from pipeline.component import Reader from pipeline.interface import Data from pipeline.interface import Model from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": "experiment"} guest_test_data = {"name": "breast_hetero_guest", "namespace": "experiment"} host_train_data = {"name": "breast_hetero_host_tag_value", "namespace": "experiment"} host_test_data = {"name": "breast_hetero_host_tag_value", "namespace": "experiment"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=host) # define Reader components to read in data reader_0 = Reader(name="reader_0") reader_1 = Reader(name="reader_1") # configure Reader for guest reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_test_data) # configure Reader for host reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_test_data) # define DataTransform components data_transform_0 = DataTransform(name="data_transform_0") # start component numbering at 0 data_transform_1 = DataTransform(name="data_transform_1") # start component numbering at 1 param = { "with_label": True, "label_name": "y", "label_type": "int", "output_format": "dense", "missing_fill": True, "missing_fill_method": "mean", "outlier_replace": False, "outlier_replace_method": "designated", "outlier_replace_value": 0.66, "outlier_impute": "-9999" } # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(**param) # get and configure DataTransform party instance of host data_transform_1.get_party_instance(role='guest', party_id=guest).component_param(**param) param = { "input_format": "tag", "with_label": False, "tag_with_value": True, "delimitor": ";", "output_format": "dense" } data_transform_0.get_party_instance(role='host', party_id=host).component_param(**param) data_transform_1.get_party_instance(role='host', party_id=host).component_param(**param) # define Intersection components intersection_0 = Intersection(name="intersection_0", intersect_method="raw") intersection_1 = Intersection(name="intersection_1", intersect_method="raw") param = { "name": 'hetero_feature_binning_0', "method": 'optimal', "optimal_binning_param": { "metric_method": "iv", "init_bucket_method": "quantile" }, "bin_indexes": -1 } hetero_feature_binning_0 = HeteroFeatureBinning(**param) statistic_0 = DataStatistics(name='statistic_0') param = { "name": 'hetero_feature_selection_0', "filter_methods": ["unique_value", "iv_filter", "statistic_filter"], "unique_param": { "eps": 1e-6 }, "iv_param": { "metrics": ["iv", "iv"], "filter_type": ["top_k", "threshold"], "take_high": [True, True], "threshold": [10, 0.1] }, "statistic_param": { "metrics": ["coefficient_of_variance", "skewness"], "filter_type": ["threshold", "threshold"], "take_high": [True, False], "threshold": [0.001, -0.01] }, "select_col_indexes": -1 } hetero_feature_selection_0 = HeteroFeatureSelection(**param) hetero_feature_selection_1 = HeteroFeatureSelection(name='hetero_feature_selection_1') param = { "task_type": "classification", "learning_rate": 0.1, "num_trees": 10, "subsample_feature_rate": 0.5, "n_iter_no_change": False, "tol": 0.0002, "bin_num": 50, "objective_param": { "objective": "cross_entropy" }, "encrypt_param": { "method": "paillier" }, "predict_param": { "threshold": 0.5 }, "tree_param": { "max_depth": 2 }, "cv_param": { "n_splits": 5, "shuffle": False, "random_seed": 103, "need_cv": False }, "validation_freqs": 2, "early_stopping_rounds": 5, "metrics": ["auc", "ks"] } hetero_secureboost_0 = HeteroSecureBoost(name='hetero_secureboost_0', **param) evaluation_0 = Evaluation(name='evaluation_0') # add components to pipeline, in order of task execution pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) # set data input sources of intersection components pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(statistic_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_feature_selection_0, data=Data(data=intersection_0.output.data), model=Model(isometric_model=[hetero_feature_binning_0.output.model, statistic_0.output.model])) pipeline.add_component(hetero_feature_selection_1, data=Data(data=intersection_1.output.data), model=Model(hetero_feature_selection_0.output.model)) # set train & validate data of hetero_secureboost_0 component pipeline.add_component(hetero_secureboost_0, data=Data(train_data=hetero_feature_selection_0.output.data, validate_data=hetero_feature_selection_1.output.data)) pipeline.add_component(evaluation_0, data=Data(data=[hetero_secureboost_0.output.data])) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() # query component summary print(pipeline.get_component("hetero_secureboost_0").get_summary()) if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()