# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component.hetero_ftl import HeteroFTL from pipeline.component.reader import Reader from pipeline.interface.data import Data from tensorflow.keras import optimizers from tensorflow.keras.layers import Dense from tensorflow.keras import initializers from pipeline.component.evaluation import Evaluation from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "nus_wide_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "nus_wide_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role='guest', party_id=guest).component_param( with_label=True, output_format="dense") data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) hetero_ftl_0 = HeteroFTL(name='hetero_ftl_0', epochs=10, alpha=1, batch_size=-1, mode='plain') hetero_ftl_0.add_nn_layer(Dense(units=32, activation='sigmoid', kernel_initializer=initializers.RandomNormal(stddev=1.0), bias_initializer=initializers.Zeros())) hetero_ftl_0.compile(optimizer=optimizers.Adam(lr=0.01)) evaluation_0 = Evaluation(name='evaluation_0', eval_type="binary") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(hetero_ftl_0, data=Data(train_data=data_transform_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_ftl_0.output.data)) pipeline.compile() pipeline.fit() # predict # deploy required components pipeline.deploy_component([data_transform_0, hetero_ftl_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component( pipeline, data=Data( predict_input={ pipeline.data_transform_0.input.data: reader_0.output.data})) # run predict model predict_pipeline.predict() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()