# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from collections import OrderedDict import torch as t from torch import nn from torch import optim from pipeline import fate_torch as ft from pipeline import fate_torch_hook from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import Evaluation from pipeline.component import HeteroNN from pipeline.component import Intersection from pipeline.component import Reader from pipeline.interface import Data from pipeline.interface import Model from pipeline.utils.tools import load_job_config # this is important, modify torch modules so that Sequential model be parsed by pipeline fate_torch_hook(t) def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True) data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") # define network structure in torch style # # define guest model Linear = nn.Linear ReLU = nn.ReLU guest_bottom_a = Linear(10, 8, True) seq = nn.Sequential( OrderedDict([ ('layer_0', guest_bottom_a), ('relu_0', ReLU()) ]) ) seq2 = nn.Sequential( ReLU(), Linear(8, 2, True), nn.Softmax(dim=1) # to use coae in binary task, output unit is 2, and need use softmax to compute probability ) # so that we can compute loss using fake labels and 2-dim outputs # define host model seq3 = nn.Sequential( Linear(20, 8, True), ReLU() ) # use interactive layer after fate_torch_hook interactive_layer = t.nn.InteractiveLayer(out_dim=8, guest_dim=8, host_dim=8, host_num=1) # loss fun ce_loss_fn = nn.CrossEntropyLoss() # optimizer, after fate torch hook optimizer can be created without parameters opt: ft.optim.Adam = optim.Adam(lr=0.01) hetero_nn_0 = HeteroNN(name="hetero_nn_0", epochs=30, floating_point_precision=None, interactive_layer_lr=0.1, batch_size=-1, early_stop="diff", coae_param={'enable': True, 'epoch': 100}) guest_nn_0 = hetero_nn_0.get_party_instance(role='guest', party_id=guest) guest_nn_0.add_bottom_model(seq) guest_nn_0.add_top_model(seq2) host_nn_0 = hetero_nn_0.get_party_instance(role='host', party_id=host) host_nn_0.add_bottom_model(seq3) hetero_nn_0.set_interactive_layer(interactive_layer) hetero_nn_0.compile(opt, loss=ce_loss_fn) hetero_nn_1 = HeteroNN(name="hetero_nn_1") evaluation_0 = Evaluation(name="evaluation_0") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_nn_0, data=Data(train_data=intersection_0.output.data)) pipeline.add_component(hetero_nn_1, data=Data(test_data=intersection_0.output.data), model=Model(model=hetero_nn_0.output.model)) pipeline.add_component(evaluation_0, data=Data(data=hetero_nn_0.output.data)) pipeline.compile() pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()