# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import Evaluation from pipeline.component import HeteroSSHELinR from pipeline.component import Intersection from pipeline.component import Reader from pipeline.component import SampleWeight from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="motor_speed", label_type="float", output_format="dense") data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True, sample_weight_name="pm") sample_weight_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) hetero_linr_0 = HeteroSSHELinR(name="hetero_linr_0", penalty="L2", optimizer="rmsprop", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, decay=0.0, decay_sqrt=False, init_param={"init_method": "zeros"}, reveal_every_iter=True, reveal_strategy="respectively" ) evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1) # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_linr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_0.output.data)) pipeline.compile() pipeline.fit() # predict # deploy required components pipeline.deploy_component([data_transform_0, intersection_0, hetero_linr_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component(pipeline, data=Data( predict_input={pipeline.data_transform_0.input.data: reader_0.output.data})) # run predict model predict_pipeline.predict() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()