# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import json from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import HomoFeatureBinning from pipeline.component import Reader from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=host, arbiter=arbiter) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) # define DataTransform components data_transform_0 = DataTransform( name="data_transform_0", with_label=True, output_format="dense") # start component numbering at 0 homo_binning_0 = HomoFeatureBinning(name='homo_binning_0', sample_bins=1000, method="recursive_query", bin_indexes=[0, 2, 4, 6]) # add components to pipeline, in order of task execution pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) # set data input sources of intersection components pipeline.add_component(homo_binning_0, data=Data(data=data_transform_0.output.data)) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() # query component summary # print(json.dumps(pipeline.get_component("homo_binning_0").get_summary(), indent=4, ensure_ascii=False)) if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()