# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import Reader from pipeline.component import DataTransform from pipeline.component import FeldmanVerifiableSum from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host guest_train_data = {"name": "breast_homo_test", "namespace": f"experiment_sid{namespace}"} host_train_data = {"name": "breast_homo_test", "namespace": f"experiment_sid{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role="guest", party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance(role="host", party_id=hosts).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", with_match_id=True) # get and configure DataTransform party instance of guest data_transform_0.get_party_instance( role="guest", party_id=guest).component_param( with_label=False, output_format="dense") # get and configure DataTransform party instance of host data_transform_0.get_party_instance(role="host", party_id=hosts).component_param(with_label=False) # define FeldmanVerifiableSum components feldmanverifiablesum_0 = FeldmanVerifiableSum(name="feldmanverifiablesum_0") feldmanverifiablesum_0.get_party_instance(role="guest", party_id=guest).component_param(sum_cols=[1, 2, 3], q_n=6) feldmanverifiablesum_0.get_party_instance(role="host", party_id=hosts).component_param(sum_cols=[1, 2, 3], q_n=6) # add components to pipeline, in order of task execution. pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(feldmanverifiablesum_0, data=Data(data=data_transform_0.output.data)) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()