# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import HeteroLR from pipeline.component import Intersection from pipeline.component import Reader from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment_sid{namespace}"} host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment_sid{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).\ set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", with_match_id=True) data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True) data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") lr_param = { "name": "hetero_lr_0", "penalty": "L2", "optimizer": "rmsprop", "tol": 0.0001, "alpha": 0.01, "max_iter": 30, "early_stop": "diff", "batch_size": 320, "learning_rate": 0.15, "init_param": { "init_method": "zeros" }, "sqn_param": { "update_interval_L": 3, "memory_M": 5, "sample_size": 5000, "random_seed": None }, "cv_param": { "n_splits": 5, "shuffle": False, "random_seed": 103, "need_cv": False } } hetero_lr_0 = HeteroLR(**lr_param) # evaluation_0 = Evaluation(name='evaluation_0') pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data)) # pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data)) pipeline.compile() pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()