# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import Reader from pipeline.component import Union from pipeline.interface import Data from pipeline.interface import Model from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_1 = Reader(name="reader_1") reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) data_transform_0 = DataTransform(name="data_transform_0", with_label=True, output_format="dense", label_name="y", missing_fill=False, outlier_replace=False) data_transform_1 = DataTransform(name="data_transform_1", with_label=True, output_format="dense", label_name="y", missing_fill=False, outlier_replace=False) union_0 = Union(name="union_0", allow_missing=False, need_run=True) pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component( data_transform_1, data=Data( data=reader_1.output.data), model=Model( data_transform_0.output.model)) pipeline.add_component(union_0, data=Data(data=[data_transform_0.output.data, data_transform_1.output.data])) pipeline.compile() pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()