#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy from federatedml.param.base_param import BaseParam from federatedml.param.encrypt_param import EncryptParam from federatedml.util import consts, LOGGER class TransformParam(BaseParam): """ Define how to transfer the cols Parameters ---------- transform_cols : list of column index, default: -1 Specify which columns need to be transform. If column index is None, None of columns will be transformed. If it is -1, it will use same columns as cols in binning module. Note tha columns specified by `transform_cols` and `transform_names` will be combined. transform_names: list of string, default: [] Specify which columns need to calculated. Each element in the list represent for a column name in header. Note tha columns specified by `transform_cols` and `transform_names` will be combined. transform_type: {'bin_num', 'woe', None} Specify which value these columns going to replace. 1. bin_num: Transfer original feature value to bin index in which this value belongs to. 2. woe: This is valid for guest party only. It will replace original value to its woe value 3. None: nothing will be replaced. """ def __init__(self, transform_cols=-1, transform_names=None, transform_type="bin_num"): super(TransformParam, self).__init__() self.transform_cols = transform_cols self.transform_names = transform_names self.transform_type = transform_type def check(self): descr = "Transform Param's " if self.transform_cols is not None and self.transform_cols != -1: self.check_defined_type(self.transform_cols, descr, ['list']) self.check_defined_type(self.transform_names, descr, ['list', "NoneType"]) if self.transform_names is not None: for name in self.transform_names: if not isinstance(name, str): raise ValueError("Elements in transform_names should be string type") self.check_valid_value(self.transform_type, descr, ['bin_num', 'woe', None]) class OptimalBinningParam(BaseParam): """ Indicate optimal binning params Parameters ---------- metric_method: str, default: "iv" The algorithm metric method. Support iv, gini, ks, chi-square min_bin_pct: float, default: 0.05 The minimum percentage of each bucket max_bin_pct: float, default: 1.0 The maximum percentage of each bucket init_bin_nums: int, default 100 Number of bins when initialize mixture: bool, default: True Whether each bucket need event and non-event records init_bucket_method: str default: quantile Init bucket methods. Accept quantile and bucket. """ def __init__(self, metric_method='iv', min_bin_pct=0.05, max_bin_pct=1.0, init_bin_nums=1000, mixture=True, init_bucket_method='quantile'): super().__init__() self.init_bucket_method = init_bucket_method self.metric_method = metric_method self.max_bin = None self.mixture = mixture self.max_bin_pct = max_bin_pct self.min_bin_pct = min_bin_pct self.init_bin_nums = init_bin_nums self.adjustment_factor = None def check(self): descr = "hetero binning's optimal binning param's" self.check_string(self.metric_method, descr) self.metric_method = self.metric_method.lower() if self.metric_method in ['chi_square', 'chi-square']: self.metric_method = 'chi_square' self.check_valid_value(self.metric_method, descr, ['iv', 'gini', 'chi_square', 'ks']) self.check_positive_integer(self.init_bin_nums, descr) self.init_bucket_method = self.init_bucket_method.lower() self.check_valid_value(self.init_bucket_method, descr, ['quantile', 'bucket']) if self.max_bin_pct not in [1, 0]: self.check_decimal_float(self.max_bin_pct, descr) if self.min_bin_pct not in [1, 0]: self.check_decimal_float(self.min_bin_pct, descr) if self.min_bin_pct > self.max_bin_pct: raise ValueError("Optimal binning's min_bin_pct should less or equal than max_bin_pct") self.check_boolean(self.mixture, descr) self.check_positive_integer(self.init_bin_nums, descr) class FeatureBinningParam(BaseParam): """ Define the feature binning method Parameters ---------- method : str, 'quantile', 'bucket' or 'optimal', default: 'quantile' Binning method. compress_thres: int, default: 10000 When the number of saved summaries exceed this threshold, it will call its compress function head_size: int, default: 10000 The buffer size to store inserted observations. When head list reach this buffer size, the QuantileSummaries object start to generate summary(or stats) and insert into its sampled list. error: float, 0 <= error < 1 default: 0.001 The error of tolerance of binning. The final split point comes from original data, and the rank of this value is close to the exact rank. More precisely, floor((p - 2 * error) * N) <= rank(x) <= ceil((p + 2 * error) * N) where p is the quantile in float, and N is total number of data. bin_num: int, bin_num > 0, default: 10 The max bin number for binning bin_indexes : list of int or int, default: -1 Specify which columns need to be binned. -1 represent for all columns. If you need to indicate specific cols, provide a list of header index instead of -1. Note tha columns specified by `bin_indexes` and `bin_names` will be combined. bin_names : list of string, default: [] Specify which columns need to calculated. Each element in the list represent for a column name in header. Note tha columns specified by `bin_indexes` and `bin_names` will be combined. adjustment_factor : float, default: 0.5 the adjustment factor when calculating WOE. This is useful when there is no event or non-event in a bin. Please note that this parameter will NOT take effect for setting in host. category_indexes : list of int or int, default: [] Specify which columns are category features. -1 represent for all columns. List of int indicate a set of such features. For category features, bin_obj will take its original values as split_points and treat them as have been binned. If this is not what you expect, please do NOT put it into this parameters. The number of categories should not exceed bin_num set above. Note tha columns specified by `category_indexes` and `category_names` will be combined. category_names : list of string, default: [] Use column names to specify category features. Each element in the list represent for a column name in header. Note tha columns specified by `category_indexes` and `category_names` will be combined. local_only : bool, default: False Whether just provide binning method to guest party. If true, host party will do nothing. Warnings: This parameter will be deprecated in future version. transform_param: TransformParam Define how to transfer the binned data. need_run: bool, default True Indicate if this module needed to be run skip_static: bool, default False If true, binning will not calculate iv, woe etc. In this case, optimal-binning will not be supported. """ def __init__(self, method=consts.QUANTILE, compress_thres=consts.DEFAULT_COMPRESS_THRESHOLD, head_size=consts.DEFAULT_HEAD_SIZE, error=consts.DEFAULT_RELATIVE_ERROR, bin_num=consts.G_BIN_NUM, bin_indexes=-1, bin_names=None, adjustment_factor=0.5, transform_param=TransformParam(), local_only=False, category_indexes=None, category_names=None, need_run=True, skip_static=False): super(FeatureBinningParam, self).__init__() self.method = method self.compress_thres = compress_thres self.head_size = head_size self.error = error self.adjustment_factor = adjustment_factor self.bin_num = bin_num self.bin_indexes = bin_indexes self.bin_names = bin_names self.category_indexes = category_indexes self.category_names = category_names self.transform_param = copy.deepcopy(transform_param) self.need_run = need_run self.skip_static = skip_static self.local_only = local_only def check(self): descr = "Binning param's" self.check_string(self.method, descr) self.method = self.method.lower() self.check_positive_integer(self.compress_thres, descr) self.check_positive_integer(self.head_size, descr) self.check_decimal_float(self.error, descr) self.check_positive_integer(self.bin_num, descr) if self.bin_indexes != -1: self.check_defined_type(self.bin_indexes, descr, ['list', 'RepeatedScalarContainer', "NoneType"]) self.check_defined_type(self.bin_names, descr, ['list', "NoneType"]) self.check_defined_type(self.category_indexes, descr, ['list', "NoneType"]) self.check_defined_type(self.category_names, descr, ['list', "NoneType"]) self.check_open_unit_interval(self.adjustment_factor, descr) self.check_boolean(self.local_only, descr) class HeteroFeatureBinningParam(FeatureBinningParam): """ split_points_by_index: dict, default None Manually specified split points for local features; key should be feature index, value should be split points in sorted list; along with `split_points_by_col_name`, keys should cover all local features, including categorical features; note that each split point list should have length equal to desired bin num(n), with first (n-1) entries equal to the maximum value(inclusive) of each first (n-1) bins, and nth value the max of current feature. split_points_by_col_name: dict, default None Manually specified split points for local features; key should be feature name, value should be split points in sorted list; along with `split_points_by_index`, keys should cover all local features, including categorical features; note that each split point list should have length equal to desired bin num(n), with first (n-1) entries equal to the maximum value(inclusive) of each first (n-1) bins, and nth value the max of current feature. """ def __init__(self, method=consts.QUANTILE, compress_thres=consts.DEFAULT_COMPRESS_THRESHOLD, head_size=consts.DEFAULT_HEAD_SIZE, error=consts.DEFAULT_RELATIVE_ERROR, bin_num=consts.G_BIN_NUM, bin_indexes=-1, bin_names=None, adjustment_factor=0.5, transform_param=TransformParam(), optimal_binning_param=OptimalBinningParam(), local_only=False, category_indexes=None, category_names=None, encrypt_param=EncryptParam(), need_run=True, skip_static=False, split_points_by_index=None, split_points_by_col_name=None): super(HeteroFeatureBinningParam, self).__init__(method=method, compress_thres=compress_thres, head_size=head_size, error=error, bin_num=bin_num, bin_indexes=bin_indexes, bin_names=bin_names, adjustment_factor=adjustment_factor, transform_param=transform_param, category_indexes=category_indexes, category_names=category_names, need_run=need_run, local_only=local_only, skip_static=skip_static) self.optimal_binning_param = copy.deepcopy(optimal_binning_param) self.encrypt_param = encrypt_param self.split_points_by_index = split_points_by_index self.split_points_by_col_name = split_points_by_col_name def check(self): descr = "Hetero Binning param's" super(HeteroFeatureBinningParam, self).check() self.check_valid_value(self.method, descr, [consts.QUANTILE, consts.BUCKET, consts.OPTIMAL]) self.optimal_binning_param.check() self.encrypt_param.check() if self.encrypt_param.method != consts.PAILLIER: raise ValueError("Feature Binning support Paillier encrypt method only.") if self.skip_static and self.method == consts.OPTIMAL: raise ValueError("When skip_static, optimal binning is not supported.") self.transform_param.check() if self.skip_static and self.transform_param.transform_type == 'woe': raise ValueError("To use woe transform, skip_static should set as False") if self.split_points_by_index is not None: LOGGER.warning(f"When manually setting binning split points, 'method' will be ignored.") if not isinstance(self.split_points_by_index, dict): raise ValueError(f"{descr} `split_points_by_index` should be a dict") for k, v in self.split_points_by_index.items(): if not isinstance(k, str): raise ValueError(f"{descr} `split_points_by_index`'s keys should be str") if not isinstance(v, list): raise ValueError(f"{descr} `split_points_by_index`'s values should be given in list format") if sorted(v) != v: raise ValueError(f"{k}'s split points({v}) should be given in sorted order.") if self.split_points_by_col_name is not None: LOGGER.warning(f"When manually setting binning split points, 'method' will be ignored.") if not isinstance(self.split_points_by_col_name, dict): raise ValueError(f"{descr} `split_points_by_col_name` should be a dict") for k, v in self.split_points_by_col_name.items(): if not isinstance(k, str): raise ValueError(f"{descr} `split_points_by_col_name`'s keys should be str") if not isinstance(v, list): raise ValueError(f"{descr} `split_points_by_col_name`'s values should be given in list format") if sorted(v) != v: raise ValueError(f"{k}'s split points({v}) should be given in sorted order.") class HomoFeatureBinningParam(FeatureBinningParam): def __init__(self, method=consts.VIRTUAL_SUMMARY, compress_thres=consts.DEFAULT_COMPRESS_THRESHOLD, head_size=consts.DEFAULT_HEAD_SIZE, error=consts.DEFAULT_RELATIVE_ERROR, sample_bins=100, bin_num=consts.G_BIN_NUM, bin_indexes=-1, bin_names=None, adjustment_factor=0.5, transform_param=TransformParam(), category_indexes=None, category_names=None, need_run=True, skip_static=False, max_iter=100): super(HomoFeatureBinningParam, self).__init__(method=method, compress_thres=compress_thres, head_size=head_size, error=error, bin_num=bin_num, bin_indexes=bin_indexes, bin_names=bin_names, adjustment_factor=adjustment_factor, transform_param=transform_param, category_indexes=category_indexes, category_names=category_names, need_run=need_run, skip_static=skip_static) self.sample_bins = sample_bins self.max_iter = max_iter def check(self): descr = "homo binning param's" super(HomoFeatureBinningParam, self).check() self.check_string(self.method, descr) self.method = self.method.lower() self.check_valid_value(self.method, descr, [consts.VIRTUAL_SUMMARY, consts.RECURSIVE_QUERY]) self.check_positive_integer(self.max_iter, descr) if self.max_iter > 100: raise ValueError("Max iter is not allowed exceed 100")