#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy from types import SimpleNamespace from federatedml.param.base_param import BaseParam from federatedml.param.base_param import deprecated_param from federatedml.param.callback_param import CallbackParam from federatedml.param.cross_validation_param import CrossValidationParam from federatedml.param.encrypt_param import EncryptParam from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam from federatedml.param.predict_param import PredictParam from federatedml.util import consts class DatasetParam(BaseParam): def __init__(self, dataset_name=None, **kwargs): super(DatasetParam, self).__init__() self.dataset_name = dataset_name self.param = kwargs def check(self): if self.dataset_name is not None: self.check_string(self.dataset_name, 'dataset_name') def to_dict(self): ret = {'dataset_name': self.dataset_name, 'param': self.param} return ret class SelectorParam(object): """ Parameters ---------- method: None or str back propagation select method, accept "relative" only, default: None selective_size: int deque size to use, store the most recent selective_size historical loss, default: 1024 beta: int sample whose selective probability >= power(np.random, beta) will be selected min_prob: Numeric selective probability is max(min_prob, rank_rate) """ def __init__(self, method=None, beta=1, selective_size=consts.SELECTIVE_SIZE, min_prob=0, random_state=None): self.method = method self.selective_size = selective_size self.beta = beta self.min_prob = min_prob self.random_state = random_state def check(self): if self.method is not None and self.method not in ["relative"]: raise ValueError('selective method should be None be "relative"') if not isinstance(self.selective_size, int) or self.selective_size <= 0: raise ValueError("selective size should be a positive integer") if not isinstance(self.beta, int): raise ValueError("beta should be integer") if not isinstance(self.min_prob, (float, int)): raise ValueError("min_prob should be numeric") class CoAEConfuserParam(BaseParam): """ A label protect mechanism proposed in paper: "Batch Label Inference and Replacement Attacks in Black-Boxed Vertical Federated Learning" paper link: https://arxiv.org/abs/2112.05409 Convert true labels to fake soft labels by using an auto-encoder. Args: enable: boolean run CoAE or not epoch: None or int auto-encoder training epochs lr: float auto-encoder learning rate lambda1: float parameter to control the difference between true labels and fake soft labels. Larger the parameter, autoencoder will give more attention to making true labels and fake soft label different. lambda2: float parameter to control entropy loss, see original paper for details verbose: boolean print loss log while training auto encoder """ def __init__(self, enable=False, epoch=50, lr=0.001, lambda1=1.0, lambda2=2.0, verbose=False): super(CoAEConfuserParam, self).__init__() self.enable = enable self.epoch = epoch self.lr = lr self.lambda1 = lambda1 self.lambda2 = lambda2 self.verbose = verbose def check(self): self.check_boolean(self.enable, 'enable') if not isinstance(self.epoch, int) or self.epoch <= 0: raise ValueError("epoch should be a positive integer") if not isinstance(self.lr, float): raise ValueError('lr should be a float number') if not isinstance(self.lambda1, float): raise ValueError('lambda1 should be a float number') if not isinstance(self.lambda2, float): raise ValueError('lambda2 should be a float number') self.check_boolean(self.verbose, 'verbose') @deprecated_param("validation_freqs", "early_stopping_rounds", "metrics", "use_first_metric_only") class HeteroNNParam(BaseParam): """ Parameters used for Hetero Neural Network. Parameters ---------- task_type: str, task type of hetero nn model, one of 'classification', 'regression'. bottom_nn_define: a dict represents the structure of bottom neural network. interactive_layer_define: a dict represents the structure of interactive layer. interactive_layer_lr: float, the learning rate of interactive layer. top_nn_define: a dict represents the structure of top neural network. optimizer: optimizer method, accept following types: 1. a string, one of "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD" 2. a dict, with a required key-value pair keyed by "optimizer", with optional key-value pairs such as learning rate. defaults to "SGD". loss: str, a string to define loss function used epochs: int, the maximum iteration for aggregation in training. batch_size : int, batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy. defaults to -1. early_stop : str, accept 'diff' only in this version, default: 'diff' Method used to judge converge or not. a) diff: Use difference of loss between two iterations to judge whether converge. floating_point_precision: None or integer, if not None, means use floating_point_precision-bit to speed up calculation, e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide the result by 2**floating_point_precision in the end. callback_param: CallbackParam object """ def __init__(self, task_type='classification', bottom_nn_define=None, top_nn_define=None, interactive_layer_define=None, interactive_layer_lr=0.9, config_type='pytorch', optimizer='SGD', loss=None, epochs=100, batch_size=-1, early_stop="diff", tol=1e-5, seed=100, encrypt_param=EncryptParam(), encrypted_mode_calculator_param=EncryptedModeCalculatorParam(), predict_param=PredictParam(), cv_param=CrossValidationParam(), validation_freqs=None, early_stopping_rounds=None, metrics=None, use_first_metric_only=True, selector_param=SelectorParam(), floating_point_precision=23, callback_param=CallbackParam(), coae_param=CoAEConfuserParam(), dataset=DatasetParam() ): super(HeteroNNParam, self).__init__() self.task_type = task_type self.bottom_nn_define = bottom_nn_define self.interactive_layer_define = interactive_layer_define self.interactive_layer_lr = interactive_layer_lr self.top_nn_define = top_nn_define self.batch_size = batch_size self.epochs = epochs self.early_stop = early_stop self.tol = tol self.optimizer = optimizer self.loss = loss self.validation_freqs = validation_freqs self.early_stopping_rounds = early_stopping_rounds self.metrics = metrics or [] self.use_first_metric_only = use_first_metric_only self.encrypt_param = copy.deepcopy(encrypt_param) self.encrypted_model_calculator_param = encrypted_mode_calculator_param self.predict_param = copy.deepcopy(predict_param) self.cv_param = copy.deepcopy(cv_param) self.selector_param = selector_param self.floating_point_precision = floating_point_precision self.callback_param = copy.deepcopy(callback_param) self.coae_param = coae_param self.dataset = dataset self.seed = seed self.config_type = 'pytorch' # pytorch only def check(self): assert isinstance(self.dataset, DatasetParam), 'dataset must be a DatasetParam()' self.dataset.check() self.check_positive_integer(self.seed, 'seed') if self.task_type not in ["classification", "regression"]: raise ValueError("config_type should be classification or regression") if not isinstance(self.tol, (int, float)): raise ValueError("tol should be numeric") if not isinstance(self.epochs, int) or self.epochs <= 0: raise ValueError("epochs should be a positive integer") if self.bottom_nn_define and not isinstance(self.bottom_nn_define, dict): raise ValueError("bottom_nn_define should be a dict defining the structure of neural network") if self.top_nn_define and not isinstance(self.top_nn_define, dict): raise ValueError("top_nn_define should be a dict defining the structure of neural network") if self.interactive_layer_define is not None and not isinstance(self.interactive_layer_define, dict): raise ValueError( "the interactive_layer_define should be a dict defining the structure of interactive layer") if self.batch_size != -1: if not isinstance(self.batch_size, int) \ or self.batch_size < consts.MIN_BATCH_SIZE: raise ValueError( " {} not supported, should be larger than 10 or -1 represent for all data".format(self.batch_size)) if self.early_stop != "diff": raise ValueError("early stop should be diff in this version") if self.metrics is not None and not isinstance(self.metrics, list): raise ValueError("metrics should be a list") if self.floating_point_precision is not None and \ (not isinstance(self.floating_point_precision, int) or self.floating_point_precision < 0 or self.floating_point_precision > 63): raise ValueError("floating point precision should be null or a integer between 0 and 63") self.encrypt_param.check() self.encrypted_model_calculator_param.check() self.predict_param.check() self.selector_param.check() self.coae_param.check() descr = "hetero nn param's " for p in ["early_stopping_rounds", "validation_freqs", "use_first_metric_only"]: if self._deprecated_params_set.get(p): if "callback_param" in self.get_user_feeded(): raise ValueError(f"{p} and callback param should not be set simultaneously," f"{self._deprecated_params_set}, {self.get_user_feeded()}") else: self.callback_param.callbacks = ["PerformanceEvaluate"] break if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"): self.callback_param.validation_freqs = self.validation_freqs if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"): self.callback_param.early_stopping_rounds = self.early_stopping_rounds if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"): if self.metrics: self.callback_param.metrics = self.metrics if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"): self.callback_param.use_first_metric_only = self.use_first_metric_only