#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from federatedml.param.base_param import BaseParam class InitParam(BaseParam): """ Initialize Parameters used in initializing a model. Parameters ---------- init_method : {'random_uniform', 'random_normal', 'ones', 'zeros' or 'const'} Initial method. init_const : int or float, default: 1 Required when init_method is 'const'. Specify the constant. fit_intercept : bool, default: True Whether to initialize the intercept or not. """ def __init__(self, init_method='random_uniform', init_const=1, fit_intercept=True, random_seed=None): super().__init__() self.init_method = init_method self.init_const = init_const self.fit_intercept = fit_intercept self.random_seed = random_seed def check(self): if type(self.init_method).__name__ != "str": raise ValueError( "Init param's init_method {} not supported, should be str type".format(self.init_method)) else: self.init_method = self.init_method.lower() if self.init_method not in ['random_uniform', 'random_normal', 'ones', 'zeros', 'const']: raise ValueError( "Init param's init_method {} not supported, init_method should in 'random_uniform'," " 'random_normal' 'ones', 'zeros' or 'const'".format(self.init_method)) if type(self.init_const).__name__ not in ['int', 'float']: raise ValueError( "Init param's init_const {} not supported, should be int or float type".format(self.init_const)) if type(self.fit_intercept).__name__ != 'bool': raise ValueError( "Init param's fit_intercept {} not supported, should be bool type".format(self.fit_intercept)) if self.random_seed is not None: if type(self.random_seed).__name__ != 'int': raise ValueError( "Init param's random_seed {} not supported, should be int or float type".format(self.random_seed)) return True