#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy from federatedml.param.base_param import BaseParam from federatedml.param.predict_param import PredictParam class LocalBaselineParam(BaseParam): """ Define the local baseline model param Parameters ---------- model_name : str sklearn model used to train on baseline model model_opts : dict or none, default None Param to be used as input into baseline model predict_param : PredictParam object, default: default PredictParam object predict param need_run: bool, default True Indicate if this module needed to be run """ def __init__(self, model_name="LogisticRegression", model_opts=None, predict_param=PredictParam(), need_run=True): super(LocalBaselineParam, self).__init__() self.model_name = model_name self.model_opts = model_opts self.predict_param = copy.deepcopy(predict_param) self.need_run = need_run def check(self): descr = "local baseline param" self.model_name = self.check_and_change_lower(self.model_name, ["logisticregression"], descr) self.check_boolean(self.need_run, descr) if self.model_opts is not None: if not isinstance(self.model_opts, dict): raise ValueError(descr + " model_opts must be None or dict.") if self.model_opts is None: self.model_opts = {} self.predict_param.check() return True