#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from federatedml.param.base_param import BaseParam from federatedml.util import consts, LOGGER class SampleWeightParam(BaseParam): """ Define sample weight parameters Parameters ---------- class_weight : str or dict, or None, default None class weight dictionary or class weight computation mode, string value only accepts 'balanced'; If dict provided, key should be class(label), and weight will not be normalize, e.g.: {'0': 1, '1': 2} If both class_weight and sample_weight_name are None, return original input data. sample_weight_name : str name of column which specifies sample weight. feature name of sample weight; if both class_weight and sample_weight_name are None, return original input data normalize : bool, default False whether to normalize sample weight extracted from `sample_weight_name` column need_run : bool, default True whether to run this module or not """ def __init__(self, class_weight=None, sample_weight_name=None, normalize=False, need_run=True): self.class_weight = class_weight self.sample_weight_name = sample_weight_name self.normalize = normalize self.need_run = need_run def check(self): descr = "sample weight param's" if self.class_weight: if not isinstance(self.class_weight, str) and not isinstance(self.class_weight, dict): raise ValueError(f"{descr} class_weight must be str, dict, or None.") if isinstance(self.class_weight, str): self.class_weight = self.check_and_change_lower(self.class_weight, [consts.BALANCED], f"{descr} class_weight") if isinstance(self.class_weight, dict): for k, v in self.class_weight.items(): if v < 0: LOGGER.warning(f"Negative value {v} provided for class {k} as class_weight.") if self.sample_weight_name: self.check_string(self.sample_weight_name, f"{descr} sample_weight_name") self.check_boolean(self.need_run, f"{descr} need_run") self.check_boolean(self.normalize, f"{descr} normalize") return True