#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from federatedml.param.base_param import BaseParam from federatedml.util import consts class StepwiseParam(BaseParam): """ Define stepwise params Parameters ---------- score_name: {"AIC", "BIC"}, default: 'AIC' Specify which model selection criterion to be used mode: {"Hetero", "Homo"}, default: 'Hetero' Indicate what mode is current task role: {"Guest", "Host", "Arbiter"}, default: 'Guest' Indicate what role is current party direction: {"both", "forward", "backward"}, default: 'both' Indicate which direction to go for stepwise. 'forward' means forward selection; 'backward' means elimination; 'both' means possible models of both directions are examined at each step. max_step: int, default: '10' Specify total number of steps to run before forced stop. nvmin: int, default: '2' Specify the min subset size of final model, cannot be lower than 2. When nvmin > 2, the final model size may be smaller than nvmin due to max_step limit. nvmax: int, default: None Specify the max subset size of final model, 2 <= nvmin <= nvmax. The final model size may be larger than nvmax due to max_step limit. need_stepwise: bool, default False Indicate if this module needed to be run """ def __init__(self, score_name="AIC", mode=consts.HETERO, role=consts.GUEST, direction="both", max_step=10, nvmin=2, nvmax=None, need_stepwise=False): super(StepwiseParam, self).__init__() self.score_name = score_name self.mode = mode self.role = role self.direction = direction self.max_step = max_step self.nvmin = nvmin self.nvmax = nvmax self.need_stepwise = need_stepwise def check(self): model_param_descr = "stepwise param's" self.score_name = self.check_and_change_lower(self.score_name, ["aic", "bic"], model_param_descr) self.check_valid_value(self.mode, model_param_descr, valid_values=[consts.HOMO, consts.HETERO]) self.check_valid_value(self.role, model_param_descr, valid_values=[consts.HOST, consts.GUEST, consts.ARBITER]) self.direction = self.check_and_change_lower(self.direction, ["forward", "backward", "both"], model_param_descr) self.check_positive_integer(self.max_step, model_param_descr) self.check_positive_integer(self.nvmin, model_param_descr) if self.nvmin < 2: raise ValueError(model_param_descr + " nvmin must be no less than 2.") if self.nvmax is not None: self.check_positive_integer(self.nvmax, model_param_descr) if self.nvmin > self.nvmax: raise ValueError(model_param_descr + " nvmax must be greater than nvmin.") self.check_boolean(self.need_stepwise, model_param_descr)