# # Copyright 2021 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from sklearn.linear_model import LogisticRegression from ..component_converter import ComponentConverterBase class LRComponentConverter(ComponentConverterBase): @staticmethod def get_target_modules(): return ['HomoLR'] def convert(self, model_dict): param_obj = model_dict["HomoLogisticRegressionParam"] meta_obj = model_dict["HomoLogisticRegressionMeta"] sk_lr_model = LogisticRegression(penalty=meta_obj.penalty.lower(), tol=meta_obj.tol, fit_intercept=meta_obj.fit_intercept, max_iter=meta_obj.max_iter) coefficient = np.empty((1, len(param_obj.header))) for index in range(len(param_obj.header)): coefficient[0][index] = param_obj.weight[param_obj.header[index]] sk_lr_model.coef_ = coefficient sk_lr_model.intercept_ = np.array([param_obj.intercept]) # hard-coded 0-1 classification as HomoLR only supports this for now sk_lr_model.classes_ = np.array([0., 1.]) sk_lr_model.n_iter_ = [param_obj.iters] return sk_lr_model