# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from federatedml.protobuf import parse_pb_buffer def extract_woe_array_dict(model_param_dict, host_idx=0): if len(model_param_dict.get("multiClassResults", {}).get("labels", [])) > 2: raise ValueError(f"Does not support transforming model trained on multi-label data. Please check.") host_result = model_param_dict.get("hostResults", [])[host_idx].get("binningResult", {}) woe_array_dict = {} for col, res in host_result.items(): woe_array_dict[col] = {"woeArray": res.get("woeArray", [])} return woe_array_dict def merge_woe_array_dict(pb_name, model_param_pb, model_param_dict, woe_array_dict): model_param_pb = parse_pb_buffer(pb_name, model_param_pb) header, anonymous_header = list(model_param_pb.header), list(model_param_pb.header_anonymous) if len(header) != len(anonymous_header): raise ValueError( "Given header length and anonymous header length in model param do not match. " "Please check!" ) anonymous_col_name_dict = dict(zip(header, anonymous_header)) for col_name in model_param_pb.binning_result.binning_result: try: woe_array = woe_array_dict[anonymous_col_name_dict[col_name]]["woeArray"] except KeyError: continue model_param_pb.binning_result.binning_result[col_name].woe_array[:] = woe_array model_param_dict["binningResult"]["binningResult"][col_name]["woeArray"] = woe_array for col_name in model_param_pb.multi_class_result.results[0].binning_result: try: woe_array = woe_array_dict[anonymous_col_name_dict[col_name]]["woeArray"] except KeyError: continue model_param_pb.multi_class_result.results[0].binning_result[col_name].woe_array[:] = woe_array model_param_dict["multiClassResult"]["results"][0]["binningResult"][col_name]["woeArray"] = woe_array return model_param_pb.SerializeToString(), model_param_dict def set_model_meta(model_meta_dict): model_meta_dict.get("transformParam", {})["transformType"] = "woe" return model_meta_dict