#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from fate_crypto.psi import Curve25519 class EllipticCurve(object): """ Symmetric encryption key """ def __init__(self, curve_name, curve_key=None): self.curve = self.__get_curve_instance(curve_name, curve_key) @staticmethod def __get_curve_instance(curve_name, curve_key): if curve_key is None: return Curve25519() return Curve25519(curve_key) def get_curve_key(self): return self.curve.get_private_key() def encrypt(self, plaintext): """ Encryption method :param plaintext: :return: """ return self.curve.encrypt(plaintext) def sign(self, ciphertext): return self.curve.diffie_hellman(ciphertext) def map_hash_encrypt(self, plaintable, mode, hash_operator, salt): """ adapted from CryptorExecutor Process the input Table as (k, v) (k, enc_k) for mode == 0 (enc_k, -1) for mode == 1 (enc_k, v) for mode == 2 (k, (enc_k, v)) for mode == 3 (enc_k, k) for mode == 4 (enc_k, (k, v)) for mode == 5 :param plaintable: Table :param mode: int :return: Table """ if mode == 0: return plaintable.map( lambda k, v: ( k, self.curve.encrypt( hash_operator.compute( k, suffix_salt=salt)))) elif mode == 1: return plaintable.map( lambda k, v: ( self.curve.encrypt( hash_operator.compute( k, suffix_salt=salt)), -1)) elif mode == 2: return plaintable.map( lambda k, v: ( self.curve.encrypt( hash_operator.compute( k, suffix_salt=salt)), v)) elif mode == 3: return plaintable.map( lambda k, v: ( k, (self.curve.encrypt( hash_operator.compute( k, suffix_salt=salt)), v))) elif mode == 4: return plaintable.map( lambda k, v: ( self.curve.encrypt( hash_operator.compute( k, suffix_salt=salt)), k)) elif mode == 5: return plaintable.map( lambda k, v: (self.curve.encrypt(hash_operator.compute(k, suffix_salt=salt)), (k, v))) else: raise ValueError("Unsupported mode for elliptic curve map encryption") def map_encrypt(self, plaintable, mode): """ adapted from CryptorExecutor Process the input Table as (k, v) (k, enc_k) for mode == 0 (enc_k, -1) for mode == 1 (enc_k, v) for mode == 2 (k, (enc_k, v)) for mode == 3 (enc_k, k) for mode == 4 (enc_k, (k, v)) for mode == 5 :param plaintable: Table :param mode: int :return: Table """ if mode == 0: return plaintable.map(lambda k, v: (k, self.curve.encrypt(k))) elif mode == 1: return plaintable.map(lambda k, v: (self.curve.encrypt(k), -1)) elif mode == 2: return plaintable.map(lambda k, v: (self.curve.encrypt(k), v)) elif mode == 3: return plaintable.map(lambda k, v: (k, (self.curve.encrypt(k), v))) elif mode == 4: return plaintable.map(lambda k, v: (self.curve.encrypt(k), k)) elif mode == 5: return plaintable.map(lambda k, v: (self.curve.encrypt(k), (k, v))) else: raise ValueError("Unsupported mode for elliptic curve map encryption") def map_sign(self, plaintable, mode): """ adapted from CryptorExecutor Process the input Table as (k, v) (k, enc_k) for mode == 0 (enc_k, -1) for mode == 1 (enc_k, v) for mode == 2 (k, (enc_k, v)) for mode == 3 (enc_k, k) for mode == 4 (enc_k, (k, v)) for mode == 5 :param plaintable: Table :param mode: int :return: Table """ if mode == 0: return plaintable.map(lambda k, v: (k, self.curve.diffie_hellman(k))) elif mode == 1: return plaintable.map(lambda k, v: (self.curve.diffie_hellman(k), -1)) elif mode == 2: return plaintable.map(lambda k, v: (self.curve.diffie_hellman(k), v)) elif mode == 3: return plaintable.map(lambda k, v: (k, (self.curve.diffie_hellman(k), v))) elif mode == 4: return plaintable.map(lambda k, v: (self.curve.diffie_hellman(k), k)) elif mode == 5: return plaintable.map(lambda k, v: (self.curve.diffie_hellman(k), (k, v))) else: raise ValueError("Unsupported mode for elliptic curve map sign")