pipeline-hetero-lr-warm-start.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. #
  2. # Copyright 2019 The FATE Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import argparse
  17. import json
  18. from pipeline.backend.pipeline import PipeLine
  19. from pipeline.component import DataTransform
  20. from pipeline.component import Evaluation
  21. from pipeline.component import HeteroLR
  22. from pipeline.component import Intersection
  23. from pipeline.component import Reader
  24. from pipeline.interface import Data
  25. from pipeline.interface import Model
  26. from pipeline.utils.tools import load_job_config
  27. def prettify(response, verbose=True):
  28. if verbose:
  29. print(json.dumps(response, indent=4, ensure_ascii=False))
  30. print()
  31. return response
  32. def main(config="../../config.yaml", namespace=""):
  33. if isinstance(config, str):
  34. config = load_job_config(config)
  35. parties = config.parties
  36. guest = parties.guest[0]
  37. hosts = parties.host[0]
  38. arbiter = parties.arbiter[0]
  39. guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
  40. host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
  41. # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"}
  42. # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"}
  43. # initialize pipeline
  44. pipeline = PipeLine()
  45. # set job initiator
  46. pipeline.set_initiator(role='guest', party_id=guest)
  47. # set participants information
  48. pipeline.set_roles(guest=guest, host=hosts, arbiter=arbiter)
  49. # define Reader components to read in data
  50. reader_0 = Reader(name="reader_0")
  51. # configure Reader for guest
  52. reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
  53. # configure Reader for host
  54. reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data)
  55. data_transform_0 = DataTransform(name="data_transform_0", output_format='dense')
  56. # get DataTransform party instance of guest
  57. data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
  58. # configure DataTransform for guest
  59. data_transform_0_guest_party_instance.component_param(with_label=True)
  60. # get and configure DataTransform party instance of host
  61. data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)
  62. # define Intersection components
  63. intersection_0 = Intersection(name="intersection_0")
  64. pipeline.add_component(reader_0)
  65. pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
  66. pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
  67. lr_param = {
  68. "penalty": "L2",
  69. "optimizer": "sgd",
  70. "tol": 0.0001,
  71. "alpha": 0.01,
  72. "early_stop": "diff",
  73. "batch_size": -1,
  74. "learning_rate": 0.15,
  75. "init_param": {
  76. "init_method": "zeros",
  77. "fit_intercept": True
  78. },
  79. "encrypt_param": {
  80. "key_length": 1024
  81. },
  82. "callback_param": {
  83. "callbacks": ["ModelCheckpoint"],
  84. "validation_freqs": 1,
  85. "early_stopping_rounds": 1,
  86. "metrics": None,
  87. "use_first_metric_only": False,
  88. "save_freq": 1
  89. }
  90. }
  91. hetero_lr_0 = HeteroLR(name="hetero_lr_0", max_iter=5, **lr_param)
  92. hetero_lr_1 = HeteroLR(name="hetero_lr_1", max_iter=30, **lr_param)
  93. hetero_lr_2 = HeteroLR(name="hetero_lr_2", max_iter=30, **lr_param)
  94. pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data))
  95. pipeline.add_component(hetero_lr_1, data=Data(train_data=intersection_0.output.data),
  96. model=Model(model=hetero_lr_0.output.model))
  97. pipeline.add_component(hetero_lr_2, data=Data(train_data=intersection_0.output.data))
  98. evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
  99. pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_1.output.data,
  100. hetero_lr_2.output.data]))
  101. pipeline.compile()
  102. # fit model
  103. pipeline.fit()
  104. # query component summary
  105. # prettify(pipeline.get_component("hetero_lr_0").get_summary())
  106. # prettify(pipeline.get_component("hetero_lr_1").get_summary())
  107. # prettify(pipeline.get_component("evaluation_0").get_summary())
  108. if __name__ == "__main__":
  109. parser = argparse.ArgumentParser("PIPELINE DEMO")
  110. parser.add_argument("-config", type=str,
  111. help="config file")
  112. args = parser.parse_args()
  113. if args.config is not None:
  114. main(args.config)
  115. else:
  116. main()