123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- import json
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import HomoLR
- from pipeline.component import Reader
- from pipeline.component import FeatureScale
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"}
- guest_eval_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"}
- host_eval_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"}
- # initialize pipeline
- pipeline = PipeLine()
- # set job initiator
- pipeline.set_initiator(role='guest', party_id=guest)
- # set participants information
- pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)
- # define Reader components to read in data
- reader_0 = Reader(name="reader_0")
- # configure Reader for guest
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- # configure Reader for host
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- reader_1 = Reader(name="reader_1")
- reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_eval_data)
- reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_eval_data)
- # define DataTransform components
- data_transform_0 = DataTransform(
- name="data_transform_0",
- with_label=True,
- output_format="dense") # start component numbering at 0
- data_transform_1 = DataTransform(name="data_transform_1") # start component numbering at 0
- scale_0 = FeatureScale(name='scale_0')
- scale_1 = FeatureScale(name='scale_1')
- param = {
- "penalty": "L2",
- "optimizer": "sgd",
- "tol": 1e-05,
- "alpha": 0.01,
- "max_iter": 3,
- "early_stop": "diff",
- "batch_size": 320,
- "learning_rate": 0.15,
- "validation_freqs": 1,
- "init_param": {
- "init_method": "zeros"
- },
- "cv_param": {
- "n_splits": 4,
- "shuffle": True,
- "random_seed": 33,
- "need_cv": False
- }
- }
- homo_lr_0 = HomoLR(name='homo_lr_0', **param)
- homo_lr_1 = HomoLR(name='homo_lr_1')
- # add components to pipeline, in order of task execution
- pipeline.add_component(reader_0)
- pipeline.add_component(reader_1)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data),
- model=Model(data_transform_0.output.model))
- # set data input sources of intersection components
- pipeline.add_component(scale_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(scale_1, data=Data(data=data_transform_1.output.data),
- model=Model(scale_0.output.model))
- pipeline.add_component(homo_lr_0, data=Data(train_data=scale_0.output.data,
- validate_data=scale_1.output.data))
- pipeline.add_component(homo_lr_1, data=Data(test_data=scale_1.output.data),
- model=Model(homo_lr_0.output.model))
- evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
- evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)
- pipeline.add_component(evaluation_0, data=Data(data=[homo_lr_0.output.data,
- homo_lr_1.output.data]))
- # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
- pipeline.compile()
- # fit model
- pipeline.fit()
- # query component summary
- print(json.dumps(pipeline.get_component("homo_lr_0").get_summary(), indent=4, ensure_ascii=False))
- print(json.dumps(pipeline.get_component("evaluation_0").get_summary(), indent=4, ensure_ascii=False))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|