12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- # torch
- import torch as t
- from torch import nn
- from pipeline import fate_torch_hook
- # pipeline
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import Reader, DataTransform, HomoNN, Evaluation
- from pipeline.component.nn import TrainerParam, DatasetParam
- from pipeline.interface import Data
- from pipeline.utils.tools import load_job_config
- fate_torch_hook(t)
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
- train_data_0 = {"name": "vehicle_scale_homo_guest", "namespace": "experiment"}
- train_data_1 = {"name": "vehicle_scale_homo_host", "namespace": "experiment"}
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=train_data_0)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=train_data_1)
- data_transform_0 = DataTransform(name='data_transform_0')
- data_transform_0.get_party_instance(
- role='guest', party_id=guest).component_param(
- with_label=True, output_format="dense")
- data_transform_0.get_party_instance(
- role='host', party_id=host).component_param(
- with_label=True, output_format="dense")
- model = nn.Sequential(
- nn.Linear(18, 4),
- nn.Softmax(dim=1) # actually cross-entropy loss does the softmax
- )
- loss = nn.CrossEntropyLoss()
- optimizer = t.optim.Adam(model.parameters(), lr=0.01)
- nn_component = HomoNN(name='nn_0',
- model=model,
- loss=loss,
- optimizer=optimizer,
- trainer=TrainerParam(trainer_name='fedavg_trainer', epochs=50, batch_size=128,
- validation_freqs=1),
- # reshape and set label to long for CrossEntropyLoss
- dataset=DatasetParam(dataset_name='table', flatten_label=True, label_dtype='long'),
- torch_seed=100
- )
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(nn_component, data=Data(train_data=data_transform_0.output.data))
- pipeline.add_component(Evaluation(name='eval_0', eval_type='multi'), data=Data(data=nn_component.output.data))
- pipeline.compile()
- pipeline.fit()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|