pipeline-homo-sbt-regression.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. #
  2. # Copyright 2019 The FATE Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import argparse
  17. from pipeline.backend.pipeline import PipeLine
  18. from pipeline.component import DataTransform
  19. from pipeline.component.homo_secureboost import HomoSecureBoost
  20. from pipeline.component.reader import Reader
  21. from pipeline.interface.data import Data
  22. from pipeline.component.evaluation import Evaluation
  23. from pipeline.interface.model import Model
  24. from pipeline.utils.tools import load_job_config
  25. def main(config="../../config.yaml", namespace=""):
  26. # obtain config
  27. if isinstance(config, str):
  28. config = load_job_config(config)
  29. parties = config.parties
  30. guest = parties.guest[0]
  31. host = parties.host[0]
  32. arbiter = parties.arbiter[0]
  33. guest_train_data = {"name": "student_homo_guest", "namespace": f"experiment{namespace}"}
  34. guest_validate_data = {"name": "student_homo_test", "namespace": f"experiment{namespace}"}
  35. host_train_data = {"name": "student_homo_host", "namespace": f"experiment{namespace}"}
  36. host_validate_data = {"name": "student_homo_test", "namespace": f"experiment{namespace}"}
  37. pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
  38. data_transform_0, data_transform_1 = DataTransform(name="data_transform_0"), DataTransform(name='data_transform_1')
  39. reader_0, reader_1 = Reader(name="reader_0"), Reader(name='reader_1')
  40. reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
  41. reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
  42. data_transform_0.get_party_instance(
  43. role='guest',
  44. party_id=guest).component_param(
  45. with_label=True,
  46. output_format="dense",
  47. label_type="float")
  48. data_transform_0.get_party_instance(
  49. role='host',
  50. party_id=host).component_param(
  51. with_label=True,
  52. output_format="dense",
  53. label_type="float")
  54. reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_validate_data)
  55. reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_validate_data)
  56. data_transform_1.get_party_instance(
  57. role='guest',
  58. party_id=guest).component_param(
  59. with_label=True,
  60. output_format="dense",
  61. label_type="float")
  62. data_transform_1.get_party_instance(
  63. role='host',
  64. party_id=host).component_param(
  65. with_label=True,
  66. output_format="dense",
  67. label_type="float")
  68. homo_secureboost_0 = HomoSecureBoost(name="homo_secureboost_0",
  69. num_trees=3,
  70. task_type='regression',
  71. objective_param={"objective": "lse"},
  72. tree_param={
  73. "max_depth": 3
  74. },
  75. validation_freqs=1
  76. )
  77. evaluation_0 = Evaluation(name='evaluation_0', eval_type='regression')
  78. pipeline.add_component(reader_0)
  79. pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
  80. pipeline.add_component(reader_1)
  81. pipeline.add_component(
  82. data_transform_1, data=Data(
  83. data=reader_1.output.data), model=Model(
  84. data_transform_0.output.model))
  85. pipeline.add_component(homo_secureboost_0, data=Data(train_data=data_transform_0.output.data,
  86. validate_data=data_transform_1.output.data
  87. ))
  88. pipeline.add_component(evaluation_0, data=Data(homo_secureboost_0.output.data))
  89. pipeline.compile()
  90. pipeline.fit()
  91. if __name__ == "__main__":
  92. parser = argparse.ArgumentParser("PIPELINE DEMO")
  93. parser.add_argument("-config", type=str,
  94. help="config file")
  95. args = parser.parse_args()
  96. if args.config is not None:
  97. main(args.config)
  98. else:
  99. main()